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ProcedureAbstract
Explicit methods of solving the resistive MHD equations can be subject to restrictive
time step constraints to maintain numerical stability. The bottleneck is often caused
by a small diffusion time from the resistive term in the magnetic induction equation.
Implicit methods increase temporal stability, allowing for time steps orders of
magnitude larger than those used in explicit methods while maintaining accuracy. In
FLASH, we have implemented an implicit algorithm for solving the anisotropic
resistive term in the magnetic induction equation. The algorithm also updates the
face-centered fields on a staggered mesh in a way that preserves the divergence-free
constraint. Energy is updated via calculations of Ohmic heating and the Poynting flux.
We present a simple 1D test problem that illustrates the computational speed-up
from an explicit method to the new implicit method. The new implementation will be
most useful for modeling laser-driven plasma experiments that exhibit relatively high
magnetic resistivity.

Resistive MHD
The resistive term in the induction equation is !"

!#
= −𝛻×𝐸 = −𝛻×(𝜂 ⋅ 𝐽), where 𝜂 is

the resistivity tensor. This tensor can be broken into components: 𝜂∥, 𝜂2 , and
𝜂∧	(for	this	work,we	will	ignore	𝜂∧	). In FLASH, we write the component-wise form
of the resistive E-field in three different ways, and the code will use one depending on
the desired physics and solver method.

Isotropic: 𝐸 = 𝜂∥	𝐽 Anisotropic (diffusive): 𝐸 = 𝜂2	𝐽 + 𝜂∥ − 𝜂2 𝑏	(𝑏 ⋅ 𝐽)
(advective): 𝐸 = 𝜂∥	𝐽 − 𝜂∥ − 𝜂2 (𝑏	×𝐽)×𝑏

One can use vector identities to show that the two anisotropic forms are equivalent.
The isotropic form can be solved implicitly or with a flux-based explicit approach. The
diffusive anisotropic form is always solved implicitly, and the advective form explicitly.
The implicit solver is compatible with FLASH’s unsplit staggered MHD solver [1], which
preserves solenoidality at machine precision. We have also incorporated new
resistivity coefficients into FLASH, which were derived from numerical calculations
using the Fokker-Planck code OSHUN and give the coefficients as analytic functions of
Z (effective ionization) and 𝝌 (electron Hall parameter) [2].
Motivation and Applications
The primary motivation for an implicit method is a practical computational one.

Explicit methods are temporally limited to the diffusion time step 𝑑𝑡!GHH =
(∆J)K

L
,

which can be orders of magnitude smaller than the hydrodynamic time step. Hence,
an implicit method can save a significant amount of computational time, and below
we show a few examples of problems that would benefit from such an approach.

Test Problem
We run a 1D cylindrical test problem
in which all initial input parameters
are constant except for Bz which has a
radial Gaussian profile. Initial
conditions are given in the table to the
right. This problem aims to verify the
accuracy of the implicit solver as
compared to the flux-based explicit
solver. It tests isotropic resistivity,
because under these initial conditions,
𝜂∥ ≈ 𝜂2.

Time	step	n	calculations

Implicit	diffusion

Time	step	n+1	calculations

Face	B-field	update

Energy	update

We calculate face-centered E-fields according to the
form of the resistivity (e.g., 𝐸GNO/QR = 	𝜂GNO/Q 𝐽GNO/QR for
the isotropic case). We also calculate the face-centered
Poynting flux:

𝑆GNO/QR = 𝐸GNO/QR 	×	𝐵GNO/QR

We set up a matrix equation of the form:
1 − 𝜃	𝑑𝑡	𝐹 𝜂 𝐵RXO = (1 + (1 − 𝜃)	𝑑𝑡	𝐹(𝜂))𝐵R ,

where 𝐹(𝜂) is a matrix diffusion operator the size of the
domain. 𝜃	 determines the implicit scheme and is
typically set to 0 (forward Euler), 1 (backward Euler), or
1/2 (Crank-Nicolson). The Crank-Nicolson scheme has
the advantage of being time-centered 2nd order
accurate, whereas the others are 1st order accurate in
time. We use the HYPRE library to iteratively solve for
𝐵RXO (the cell-centered magnetic field).

Again calculate face-centered E-fields and Poynting
fluxes, but now we are using the diffused cell-centered
B-fields. Like in the first step of the procedure, the cell-
centered B-fields are used when calculating the face-
centered currents:

𝐽GNO/QRXO = 𝛻	×	𝐵RXO

First, average the face-centered E-fields to get edge-
centered values. Then these edge-centered values can
be used to update the face-centered B-fields using
Stokes’ Theorem, which maintains 𝛻 ⋅ 𝐵 = 0.	Here is an
example of the equation for updating 𝐵[ in 2D:

𝐵[,GNO/QRXO = 𝐵[,GNO/QR −
𝑑𝑡

𝐴GNO/Q

𝜃𝐸],GNO/Q,^XO/QRXO

−𝜃𝐸],GNO/Q,^NO/QRXO

(1 − 𝜃)𝐸],GNO/Q,^XO/QR

−(1 − 𝜃)𝐸],GNO/Q,^NO/QR

where 𝐴GNO/Q is the face area, which becomes 𝑑𝑦 in 2D.
This use of edge-centered E-fields to update face-
centered B-fields is described in more detail in [8],
although their equations use values at n + 1/2, whereas
we have made use of 𝜃 to allow for the use of either or
both time step data.

We now use the Poynting flux to update the total energy
density: 𝑢RXO = 𝑢R − 𝑑𝑡	(𝜃𝛻 ⋅ 𝑆RXO + (1 − 𝜃)𝛻 ⋅ 𝑆R) .

It can be shown that !a
!#
= −𝛻 ⋅ 𝑆 = 𝐽 ⋅ 𝐸 +	

!(b
K

K ))

!#
. In

other words, the change in total energy is equal to the
addition from Ohmic heating plus the change in
magnetic energy. By knowing the old and new total
energy and old and new magnetic energy, we can
calculate the Ohmic heating term, which is then added
to the electron internal energy. Depending on the EOS,
the code can now update the temperature and pressure.

Not	done	in	1D.

Cell-centered	B-
fields	are	re-
updated	by	
averaging	the	
new	face	values.

In	3D,	HYPRE	uses	a	
57-point	stencil	due	
to	complexity	from	
curl	operators.

If	face	field	update	
was	done	in	previous	
step,	there	is	an	
additional	energy	
correction	since	𝑆
was	derived	from	
cell-centered	values.

Parameter Value

𝝆 (mg/cm3) 1.0

Te (eV) 1.0

Peak	Bz (T) 10

Z 1.0

Rmax (cm) 0.5

ΔR	(µm) 5.0

Results
The figures below show a time series of radial profiles of magnetic field (top) and
electron temperature (bottom). The solution from the flux-based explicit method is
represented by solid lines, and the solution from the diffusive implicit method is
represented by data points.

Future Work
• More complex setups in 2D and 3D need to be tested to observe anisotropy
• Current implementation only works for FLASH’s uniform grid configuration; much

more work to be done to make implicit solver compatible with AMR
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Initial
Explicit (t = 10 ns)
Implicit (t = 10 ns)
Explicit (t = 30 ns)
Implicit (t = 30 ns)

Explicit (t = 100 ns)
Implicit (t = 100 ns)

Method Time	steps Run	time	(s)

Explicit 336123 2759

Implicit 487 7

Speed-up	is	significant	when	
𝑑𝑡!GHH ≪ 𝑑𝑡ef!Jg.

The results are nearly exact. In
the explicit method, the
magnetic flux (i.e., electric field)
is saved, and a direct calculation
of 𝐽 ⋅ 𝐸 (Ohmic heating) is used
to update the internal energy.
The implicit method uses the
Poynting flux and conservation
of energy as described in the
procedure to the left. As
evidenced by the electron
temperature profiles, both
approaches to calculating the
Ohmic heating term produce
equivalent results.

The tests were run on a single
core, and the table below
convincingly shows the speed-up
from using an implicit method.

Staged	Z-
pinch	[6]

Mini-MagLIF [4]

Capillary	
discharge	
plasmas	[7]

TDYNO	[3] Magnetized	
bow	shocks	[5]


