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Abstract

We present the implementation of a high-order in space and time shock-capturing
scheme for hyperbolic equations with stiff source terms. The method is based on the
Continuous Galerkin formulation of the Arbitrary DERivatives in space and time
(ADER-CG[5]/DG[2]) method, but makes use of ordinary differential equation (ODE)
integrators to locally advance the solution in time. The method attains high-order
accuracy by coupling the local multidimensional spatial information to the local
temporal evolution using a Galerkin projection on the governing partial differential
equations (PDEs) to reduce the PDE system to a local in space system of ODEs. By
making use of mixed implicit-explicit (IMEX) Runge-Kutta (RK) integrators[1l] the
method may be adapted to stably evolve PDE systems with stiff source terms with less
restrictive time steps. The method is benchmarked on stiff linear advection-reaction
equations as well as on nonlinear hydrodynamics problems with the FLASH code. This
addition promises a significant enhancement to the code’s fidelity in modeling laser-
driven plasma experiments, particularly when modeling systems with stiff-source

terms such as burning or chemical reactions that might occur on time scales much
smaller than those given by the hydrodynamics.

Linear Advection with Stiff Source

ur + Uy = S(u)
As a first test we consider linear scalar advection with a stiff source term given by
S(u) = —vu? . The problem is given by two time-scales, from advection a/Ax, and

1 /vufrom the source. Solutions to this model PDE will advect the initial profile with

speed a=1, while the source term will tend the solution towards the stable
equilibrium given by u=0.

For large values of nu>dx the time step for stability can become prohibitively small
and the system is said to be stiff. Explicit methods advanced using the advective time
step become unstable. We show numerical solutions for a discontinuous initial
profile, located at x=0.3 at t=0, advanced up to time T=0.2 using the ADER-RK method
with a second order IMEX RK2[1] method for the local space-time predictor. The
solution is computed on a grid of 64 cells, using the advective time step with a CFL of
0.75. Solutions are given for various values of v (colored +’s) along with the analytic
solution for nu=0 (dashed line). All solutions are stable without any unphysical

oscillations, even for the stiff case (v=200).
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Cell-Local IMEX-RK Temporal Evolution

At the heart of finite volume (FV) codes, like FLASH, is the reconstruction of time-
averaging of states on either side of the interfaces between control volumes that
make up the cells of the computational mesh. These states are given as the input to a
Riemann problem, which yields fluxes between computational cells that are used to

update the solution to the next time step. The accuracy of these reconstructions and
local time evolutions are then vital to the overall accuracy of the code.

Governing PDE

U, + V- F(U) = S(U)
Ansatz Solution
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Ui(X, t) — U(t) ' (I)(

Local System of ODEs
dU,

Galerkin Projection
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Time-Averaged States
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We take an ansatz solution on each cell as a modal expansion of each flow variable in
terms of a set of orthogonal basis functions, in the style of ADER-CG/DG methods [2,5].
Similar expansions are carried out for the fluxes and source terms, and together with
the governing PDE vields, through a Galerkin projection, a system of ODEs local to each
computational cell. The novelty of this approach is that it allows us to use out-of-the-
box ODE integrators to advance the system and produced time-averaged Riemann
states. Specifically, we are interested in the class of mixed implicit explicit Runge-Kutta
schemes that can treat stiff source terms implicitly for stability, while treating the

advective fluxes explicitly for simplicity, without needing to operator split the treatment
of the two terms.

Accuracy Analysis

We test the accuracy of the proposed scheme on the isentropic vortex advection
problem for the 2D Euler equations[4]. The problem consists of a nonlinear
isentropic vortex that is advected through a periodic domain, returning to its initial
configuration. Any discrepancy between the solution and the initial condition is due
entirely to numerical errors. The table below presents L1 errors along with

experimental orders of accuracy for the proposed schemes at 37 and 4t order. Both
schemes are able to meet their design orders of accuracy.

A ADER-RK3 ADER-RK4
Ly L1 Order Ly L1 Order
1/32 | 3.740508e-03 — 8.794432¢-04 —
1/64 | 6.867190e-04 2.445442 | 6.317511e-05 3.799162
1/128 | 1.028993e-04 2.738487 | 2.164219e-06 4.867438
1/256 | 1.418378e-05 2.858919 | 9.477663e-08 4.513171
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Shock Refraction

Lastly we test the proposed scheme on the shock refraction problem of Samtaney|[3].
The problem stresses a numerical scheme’s ability to adequately capture shocks and
discontinuity while also resolving smooth features in the flow. This test involves a
Mach 2 shock entering a reflecting tunnel incident on a contact discontinuity whose
interface is oblique to the shock normal. The shock refracts through the contact
discontinuity creating a vortex sheet that is unstable to the Kelving-Helmholtz
instability. Small scale roll-ups along the shocked interface are seeded by numerical
errors, and their presence while non-physical is indicative of low numerical diffusion
in the scheme. Of more interest is the larger vortex roll up near the lower wall, whose
winding is easily diffused by numerical diffusion in the scheme.
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In the above figure we present solutions to the shock refraction problem using the
propsed 3" and 4t order ADER-RK methods on an adaptive grid with 7 levels of
refinement with an equivalent resolution of 1024x512. Both solutions resolve the
main features of the flow. The 4" order method is better able to maintain the
interface over a smaller number of cells, including in the main vortex roll up,
demonstrating the utility of higher-order methods, even on problems with shocks.

Future Work

 Extension to MHD on a staggered mesh to evolve face B fields (see E. Hansen’s
poster for more on staggered mesh MHD)

* Incorporate complex source terms, such as ion-electron heat exchange or
chemically reactive flows

* Improve nonlinear solvers optimized for the local implicit solves
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