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➢ Unsteady strong shock waves emerge and play a dominant role in

stockpile stewardship, astrophysics, and fusion research [1].

➢ Classical shock theory fails to capture features of such waves that

can have a significant effect on hydrodynamic instabilities [1,2].

➢ Objective: Develop a method to semianalytically solve

problems involving unsteady strong shock waves in order to

understand the resulting hydrodynamic instability growth.

Method

➢ The method of characteristics (MoC) reduces PDEs to ODEs along

specific paths, enabling solutions to 1D nonlinear hydrodynamics.

➢ The Riemann problem describes a system after diaphragm release.

➢ The new method leverages the MoC with boundary conditions from

the Riemann problem and a novel “pick-two” rule.

Fig 3: Schematics demonstrating the MoC (left), the Riemann problem (center), and the “pick two” rule (right).
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➢ A semianalytical method for unsteady strong shocks was

developed and applied to study hydrodynamic instability growth.

➢ The method correctly captures key features of unsteady strong

shocks, including a variable entropy region and reflected wave.

➢ Perturbation growth resulting from an unsteady strong shock can

result in a complex combination of RT and RM growth.

➢ The accuracy of the method is further verified by comparing the

strengths of the waves that emerge from the steepening process to

classical shock theory and the exact Riemann problem solution.

➢ The method tracks the solution even for strong compression waves.

Fig 1: Stewardship (left), laser compression (center), and wave steepening (right) involve unsteady shocks.

Fig 2: Some inertial confinement fusion schemes utilize compression waves that interact with interfaces [3].

Fig 4: The MoC solution (top) for a steepening compression wave and the density profile through the emerging 

contact region (bottom) for a compression wave with a linear (left) and sinusoidal (right) velocity profile.

➢ The method captures the wave steepening process and correctly

calculates the reflected wave and variable entropy region.

➢ Simulations were performed using our in-house, high-order

accurate discontinuous Galerkin (DG) code to verify the theory.

Fig 5: The strength of the shock (left), contact (center), and rarefaction (right) waves that emerge from the shock 

steepening process from classical theory, the exact solution to the Riemann problem, and the present method.

➢ The method is applied to explore perturbation growth along an

interface accelerated by a compression wave.

➢ The proximity of the interface to the wave has critical implications

for the type of growth experienced, ranging from pure Rayleigh-

Taylor (RT) growth to pure Richtmyer-Meshkov (RM) growth.

➢ The interface growth is predicted using buoyancy-drag models with

the interface acceleration history provided by the present method.

Fig 6: A compression wave steepening into a shock (left) and a diagram of perturbation growth features (right).

Fig 7: Perturbation growth from simulation and BD models for interfaces following the paths outlined in Fig 6.
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