Economic Challenges of Antibacterial Drug Development

Aylin Sertkaya
Eastern Research Group, Inc. (ERG)

NIH-FDA Workshop
Session I
Bethesda, MD
July 30-31, 2014
DISCLAIMER
Funding for this work was provided by the Office of the Assistant Secretary for Planning and Evaluation and the Food and Drug Administration. The findings and conclusions of this presentation are those of the author(s) and do not necessarily represent the views of the Office of the Assistant Secretary for Planning and Evaluation, the Food and Drug Administration or the U.S. Department of Health and Human Services.
Presentation Outline

- ERG study for HHS ASPE*
 - Objectives
 - Model framework
 - Key findings
 - Limitations

- Implications for incentive choices designed to stimulate antibacterial drug development

Available at:
http://aspe.hhs.gov/sp/reports/2014/antibacterials/rpt_antibacterials.cfm
Fostering Antibacterial Drug Development

Analytical Framework

- **Policy Questions**: What are the incentives? At what level(s) should they be provided?
- **Economic Questions**: What are the private and social value of antibacterial drugs?
Study Objective

- Develop an analytic framework that can be used to assess impacts of different incentives on private and social returns to new antibacterial drug development

ANTIBACTERIAL DRUGS FOR TREATING:
- ABOM
- ABSSSI
- CABP
- CIAI
- CUTI
- HABP/VABP
Private Expected Net Present Value (ENPV) Model
Example: CABP Decision Tree (Values in $ million)

PRECLINICAL: 5.5 years
PHASE I: 0.9 years
PHASE II: 1.3 years
PHASE III: 1.0 years
NDA/BLA: 0.8 year

Success
Success
Success
Success
Success
Failure
Failure
Failure
Failure
Abandon

Model Frame of Reference

Develop

$37

$1,724

$-97

$-62

$-34

$-22

$-16

$0
Private ENPV (in $ million) by Indication

- Private ENPV variable across indications
- CABP has the highest private ENPV & HABP/VABP the lowest
- Large variation in private ENPV for all indications
- Lower bound private ENPV < $0 for all

<table>
<thead>
<tr>
<th>Indication</th>
<th>Private ENPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOM</td>
<td>-$3</td>
</tr>
<tr>
<td>ABSSSI</td>
<td>$27</td>
</tr>
<tr>
<td>CABP</td>
<td>$37</td>
</tr>
<tr>
<td>CIAI</td>
<td>$9</td>
</tr>
<tr>
<td>CUTI</td>
<td>$22</td>
</tr>
<tr>
<td>H/VABP</td>
<td>-$4</td>
</tr>
</tbody>
</table>

Note: Error bars represent 90% confidence bounds around the mean value.
Evaluating Incentives for Antibacterial Drug Development
Incentives Selected for Analysis

<table>
<thead>
<tr>
<th>INCENTIVE</th>
<th>IMPACT ON PRIVATE ENPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intellectual Property (IP) extensions [a]</td>
<td>Delays generic entry</td>
</tr>
<tr>
<td>Tax incentives</td>
<td>Decreases cost of capital</td>
</tr>
<tr>
<td>Modifications to the clinical trial process and approval standards aimed at shortening the drug development process</td>
<td>Reduces time to market</td>
</tr>
<tr>
<td>Private grants, awards, and prizes for antibacterial product research and development (paid out sequentially)</td>
<td>Decreases R&D costs</td>
</tr>
</tbody>
</table>

[a] IP collectively refers to patents/DE/ME/PTAs/PTEs/SPCs
Threshold Analysis of Select Incentives, by Indication

E(NPV\textsubscript{R4321,0}) = $100 Million
Difference b/w $100 Million Threshold & Private ENPV

- Private ENPV < $100 million threshold for all
- Private ENPV <0 for ABOM and HABP/VABP

<table>
<thead>
<tr>
<th></th>
<th>ABOM</th>
<th>ABSSSI</th>
<th>CABP</th>
<th>CIAI</th>
<th>CUTI</th>
<th>H/VABP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private ENPV</td>
<td>-$3</td>
<td>$27</td>
<td>$37</td>
<td>$9</td>
<td>$22</td>
<td>-$4</td>
</tr>
<tr>
<td>Difference b/w $100 M and Private ENPV</td>
<td>$103</td>
<td>$73</td>
<td>$63</td>
<td>$91</td>
<td>$78</td>
<td>$104</td>
</tr>
</tbody>
</table>
Incentive Values Needed to Get to the $100 Million Threshold

<table>
<thead>
<tr>
<th>Incentive</th>
<th>Model Parameter</th>
<th>Baseline</th>
<th>ABOM</th>
<th>ABSSSI</th>
<th>CABP</th>
<th>CIAI</th>
<th>CUTI</th>
<th>HABP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intellectual Property (IP) extensions [a]</td>
<td>Time to Generic Entry (in years)</td>
<td>12</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
</tr>
<tr>
<td>Tax incentives</td>
<td>Real Opportunity Cost of Capital</td>
<td>11%</td>
<td>N/S</td>
<td>2.4%</td>
<td>7.4%</td>
<td>N/S</td>
<td>2.1%</td>
<td>N/S</td>
</tr>
<tr>
<td>Modifications to the clinical trial process & approval standards</td>
<td>Total Time to Market (in Years)</td>
<td>Varies</td>
<td>N/S</td>
<td>~3.5</td>
<td>~4.0</td>
<td>N/S</td>
<td>~2.0</td>
<td>N/S</td>
</tr>
</tbody>
</table>

Grants/Awards/Prizes paid out sequentially (in $ million)								
Pre-clinical		$0	$98	$59	$46	$79	$53	$103
Phase 1		$0	$98	$76	$67	$89	$86	$103
Phase 2		$0	$196	$165	$159	$203	$223	$207
Phase 3		$0	$586	$495	$477	$617	$694	$621
NDA/BLA Approval		$0	$147	$124	$119	$154	$173	$155

[a] IP collectively refers to patents/DE/ME/PTAs/PTEs/SPCs. The example is more applicable to patent extensions, however. N/S = No solution.
Observations on Incentive Analysis Results

- IP extensions are not sufficient by themselves
- % reduction in cost of capital needed through tax incentives ranges from 33% (ABSSSI) to 81% (CUTI) from the baseline level of 11%
- Decreasing the overall time to market through modifications to clinical trial process and approval standards insufficient for ABOM, CIAI, and HABP/VABP. For ABSSSI, CABP, and CUTI, the total time to market needs to reduce significantly to 2 to 4 years
- Grant/award/prize amounts increase substantially if paid out at later stages of clinical development
- Inclusion of the pre-clinical phase and its duration has a big impact on private ENPV and hence incentive results
Observations on Incentive Analysis Results (cont.)

- Incentive results are **highly** sensitive to opportunity cost of capital value!
Sensitivity of Incentive Values Needed to Get to the $100 Million Threshold to Opportunity Cost of Capital Assumption

<table>
<thead>
<tr>
<th>Grant/Prize/Award Paid out Sequentially (in $ million)</th>
<th>ABOM</th>
<th>ABSSSI</th>
<th>CABP</th>
<th>CIAI</th>
<th>CUTI</th>
<th>HABP</th>
</tr>
</thead>
<tbody>
<tr>
<td>R=11% R=9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-clinical</td>
<td>$98</td>
<td>$75</td>
<td>$59</td>
<td>$21</td>
<td>$46</td>
<td>$6</td>
</tr>
<tr>
<td>Phase 1</td>
<td>$98</td>
<td>$80</td>
<td>$76</td>
<td>$58</td>
<td>$67</td>
<td>$42</td>
</tr>
<tr>
<td>Phase 2</td>
<td>$196</td>
<td>$160</td>
<td>$165</td>
<td>$123</td>
<td>$159</td>
<td>$125</td>
</tr>
<tr>
<td>Phase 3</td>
<td>$586</td>
<td>$593</td>
<td>$495</td>
<td>$480</td>
<td>$477</td>
<td>$404</td>
</tr>
<tr>
<td>NDA/BLA Approval</td>
<td>$147</td>
<td>$132</td>
<td>$124</td>
<td>$90</td>
<td>$119</td>
<td>$101</td>
</tr>
</tbody>
</table>

R = Real opportunity cost of capital
Observations on Incentive Analysis Results (cont.)

- Incentive results are dependent on where a sponsor is on the development process when making the decision at present!
Value of 5 Years of Delay in Generic Entry for a Sponsor at Start of Pre-Clinical Phase

<table>
<thead>
<tr>
<th>Phase</th>
<th>Success</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preclinical</td>
<td>35%</td>
<td>65%</td>
</tr>
<tr>
<td>Phase I</td>
<td>67%</td>
<td>33%</td>
</tr>
<tr>
<td>Phase II</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Phase III</td>
<td>67%</td>
<td>33%</td>
</tr>
<tr>
<td>NDA/BLA</td>
<td>85%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Δ = $9

Model Frame of Reference

5.5 years Preclinical
0.9 years Phase I
1.3 years Phase II
1.0 years Phase III
0.8 year NDA/BLA

$37 → $46

$1,724 → $1,987

$0
Value of 5 Years of Delay in Generic Entry for a Sponsor at Start of Phase 3

New Frame of Reference

PRECLINICAL	PHASE I	PHASE II	PHASE III	NDA/BLA
Develop | Success | Success | 85% Success | $4,035→$4,642
Abandon | $0 | $0 | $0 | $0

Develop | Success | 67% | $2,255→$2,601 Δ = $346
Abandon | $0 | $0 | $0 | $0

Develop | 33% Failure | $0 | $0 | $0

Success | 15% Failure | $0 | $0 | $0

Failure | $0 | $0 | $0 | $0

Δ = $346

Success | $0 | $0 | $0 | $0

Failure | $0 | $0 | $0 | $0

Abandon | $0 | $0 | $0 | $0
Value of a 5-year Delay in Generic Entry, by Stage of Development & Bacterial Disease

<table>
<thead>
<tr>
<th>Bacterial Disease</th>
<th>Developer at the Start of</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-clinical</td>
<td>Phase 1</td>
</tr>
<tr>
<td>ABOM</td>
<td>$2.8</td>
<td>$15.1</td>
</tr>
<tr>
<td>ABSSSI</td>
<td>$7.2</td>
<td>$38.3</td>
</tr>
<tr>
<td>CABP</td>
<td>$8.7</td>
<td>$46.3</td>
</tr>
<tr>
<td>CIAI</td>
<td>$4.6</td>
<td>$24.4</td>
</tr>
<tr>
<td>CUTI</td>
<td>$6.4</td>
<td>$34.2</td>
</tr>
<tr>
<td>HABP/VABP</td>
<td>$2.8</td>
<td>$14.7</td>
</tr>
<tr>
<td>ABOM</td>
<td>$2.8</td>
<td>$15.1</td>
</tr>
</tbody>
</table>
Study Limitations

- Simplified decision tree
- High model parameter uncertainty
 - Opportunity cost of capital
 - Market size
- Sponsor-specific factors and private ENPV threshold
 - New product candidate portfolio
 - Size of company (small versus large)
 - Type of company (pharmaceutical or biopharmaceutical)
- Evaluation of incentives one at a time when combination of incentives might be preferable
- Consideration of US market rather than global market
Implications of the Study for Incentive Choices

- Indifferent among the 4 different incentive methods considered
- Optimal incentive levels
 - Dependent on
 • Type of indication the drug is designed to treat
 • Development stage the drug developer is in
 - Hard to estimate precisely given the high degree of parameter uncertainty
Acknowledgments

- HHS ASPE: Amber Jessup, Hui-Hsing Wong
- FDA: Ed Cox, Mike Lanthier, & Peter Lurie
- Independent Senior Advisor: Kevin Outterson
- Workshop participants at the Brookings Institute meeting (Incentives for Change: Addressing the Challenges in Antibacterial Drug Development)
- ERG: Anna Birkenbach, Calvin Franz, Nyssa Ackerley, John Eyraud, and Valerie Overton