SCE's Evolving Approach to BESS Safety

Grant Davis

March 4, 2020
ESS Safety & Reliability Forum
PNNL Discovery Hall
Southern California Edison in 2020

• 134 years of service
• 50,000 square mile service territory
• 15 million residents
• 5 million customer accounts
• 24,000 MW system peak
• 40% energy from carbon-free sources

• More than 100,000 miles of distribution lines
• 1.4 million electric poles
• 725,000 transformers
• And energy storage...

• Search “Edison Pathway 2045” to see where the state is headed

Supporting California’s 2045 carbon neutrality goal
BESS on SCE’s Grid

- **Drivers**
 - California environmental direction
 - CPUC energy storage & microgrid decisions
 - Grid modernization & resiliency

- **Types of deployments**
 - Merchant-owned BESS
 - Energy Storage as a Service (“ESSaaS”)
 - Provide market services and distribution capital deferral
 - Customer-owned BESS
 - Behind-the-meter (BTM)
 - Commercial demand reduction, peak shaving
 - Residential backup power

- **SCE-owned demonstration and pilot BESS**
 - Enhance learning and understanding
 - Capital deferral
 - Distribution reliability
 - Preferred (renewable) resources penetration
 - Microgrids

- **SCE-owned production BESS**
 - Build one-off projects in production environment when special needs arise (e.g., third-party market inefficiencies/failure to meet certain needs)

- **SCE-owned BESS experience**
 - **Timeframe:** 1980s – present
 - **Applications:** Grid reliability, market operation
 - **Purposes:** Demonstrations, pilots, production operations
 - **Locations:** BTM (residential, commercial), IFM (12 kV, 66 kV)
 - **Power:** 4 kW – 20 MW
 - **Energy:** 10 kWh – 80 MWh
 - **Chemistries:** Pb, NaS, NaNiCl, li-ion (various)
 - **Battery manu.:** Exide, NGK, A123, LG Chem, Samsung, Panasonic, GE, Tesla
 - **Integrators:** Bechtel, S&C, A123, NEC, LG Chem, Princeton, GE, Tesla
 - **Partnerships:** EPRI, DOE, CPUC

1. Field deployments only (excludes lab-based systems). Includes decommissioned systems.
Nice mullet

Who wears suits to job sites anymore?

Nice gold buttons
Two broad categories to address BESS safety

1. Prevent a problem in the first place (offense)
2. Mitigate a problem when it appears (defense)
1. Prevent A Problem in the First Place

Battery OEMs & Sys. Integrators
- Cell/module design and manufacturing process
- Robust BMS that monitors voltage, current, temperature
- BMS, PCS, and other subsystems integrated through site-level controller

SCE
- Requirements and specifications around design features and behaviors, incl. industry standards
- Extensive lab testing at the cell, module, rack, and mini system levels
- System Acceptance Test (SAT) in the field (separate from and after system integrator’s commissioning process)

Traditionally, battery manufacturers, system integrators, and SCE very focused here
Case Study: Tehachapi Storage Project Lab Testing

- 8 MW, 32 MWh
- One of the first multi-MW + multi-MWh BESS to use li-ion batteries
- First generation stationary li-ion battery + BMS technology
- Tested cells, modules in lab
- Validated full hardware, software integration on lab “mini system” before operating full system in field
- 11 rounds, 9 months of testing, each with corresponding BMS software/firmware updates
- Enabled full system to safely and successfully complete acceptance testing in just two weeks
2. Mitigate a Problem When It Appears

Traditional practices – usually present
- Component isolation/system trip
- Cell/module/rack, PCS, system-level fusing/protection
- Smoke detection
- Gas-based fire suppression
- On-site audible and visible alarms
- Remote alarm and condition monitoring

Traditional practices – sometimes present
- Ground fault protection
- Interlocked/cross-zoned smoke, heat detectors
- Significant cell/module separation
- Anti-propagation modules

Traditionally, battery manufacturers and system integrators are active here as well, but as we’ve seen, there’s room for improvement.
Enter New (and Old) Codes and Standards

But first, some things about CA

- State adopts International Fire Code (IFC) as California Fire Code (CFC)
 - Instead of adopting NFPA 1
- Something like NFPA 855 has no effect unless and until incorporated into IFC, then adopted into CFC
 - Plus, 855 doesn’t have a scope
- State adopts National Electrical Code (NEC) as California Electrical Code (CEC)
 - Scope has utility exemption
- National Electrical Safety Code (NESC) not adopted in CA
 - State has its own utility codes: GO95 (OH) and GO128 (UG)

2016 CFC July 2018 Supplement

- Adopted 2018 IFC Section 1206 into CFC Section 608, applies to BESS
- No utility exemption
- Good requirements; might have prevented some of the significant industry events we’ve seen recently
- Array spacing? Not practical.
- Full-scale fire and fault condition testing
- Hazard mitigation analysis
- Could identify need for deflagration vents, gas detection + intrinsically safe ventilation, water-based suppression

2018 IFC/2019 CFC

- Effective in CA this year
- Section 1206 applies to BESS
- Scope has utility exemption

So, what do you do when NFPA 1 and NESC aren’t adopted in your jurisdiction, 855 doesn’t have a scope, CFC and NEC provide exemptions, and internally, BESS are not yet “standardized” grid equipment?
Reference the Industry-consensus Codes, Anyway!

- Li-ion BESS technology maturing
- System integration still leaves something to be desired, but subsystems are becoming more off-the-shelf
- SCE no longer conducts extensive lab testing prior to deploying systems in field
- Do you rely on subsystem OEMs and integrators to provide robust BMS and safe systems?
 - Yes and no
- Rely on OEMs and integrators to tackle offense (prevent a problem in the first place through unique design)
- Rely on codes and standards to tackle defense (mitigate a problem when it happens)

Current SCE Approach

- Formed cross-company BESS safety working group (T&D + Generation)
- Performing third-party risk assessments of all operational BESS; comparing to current code (NFPA 855 and CFC 1206)
- Developing internal design and operation standards
- Participating in EPRI BESS Fire Prevention and Mitigation Supplemental Project, contributing four BESS sites
- In-flight projects started under “2018 CFC” are going through permitting process
- New projects under 2019 CFC will require code compliance, anyway
 - If AHJ can’t/won’t go through permitting process, integrator must still perform required testing and analysis, and hire qualified engineering consultant to review design against code
Thank you