Diffuse Large B-Cell Lymphoma: Treatment Beyond R-CHOP

Leo I. Gordon, MD
Robert H. Lurie Comprehensive Cancer Center of Northwestern University

Learning Objective:
- Interpret the findings from clinical trials on the use of novel therapeutic strategies and how these strategies can be incorporated into current treatment paradigms

Summary
- We are rapidly moving beyond R-CHOP for all patients
- Determination of cell of origin is essential for patient selection.
- Targeted agents interact with specific pathways necessitating patient selection based on either cell of origin or mutation status (or both!)
- Several agents (lenalidomide, ibrutinib, and bortezomib) appear to overcome the adverse impact of the non-GCB DLBCL

The History of CHOP in DLBCL
2 large randomized studies, 1530 patients, 7 years (overlapping studies)

- Gordon et al NEJM 1992; 327:1342
 - No difference in TTF and OS between CHOP and m-BACOD
 - Higher "received" dose intensity with CHOP despite higher "perceived" dose intensity
 - More toxicity with m-BACOD
- Fisher et al NEJM 1993; 328:1002
 - No difference in TTF or OS among 4 regimens
 - More toxicity with regimens other than CHOP

Analysis of Prognostic Factors in DLBCL
Gordon et al Cancer 1996; 75(3):865

Figure 7: Kaplan-Meier plot of survival for the 296 patients analyzed by pre-study serum LDH level. Patients are divided into groups based on LDH less than normal, LDH 1-3x normal, greater than normal, and LDH more than 3 times greater than normal. Survival rates are worse as the LDH level increases.
Revised IPI
Sehn et al. BLOOD 2007; 109(5):1857

IPI in the Rituximab era
- Retrospective analysis of DLBCL patients treated with R-CHOP
- Revised IPI defines 3 groups: [very good, good, poor]
- No group with <50% chance of survival

NCCN IPI in DLBCL
Zhou et al. BLOOD 2014;123(6):837

Optimal Cut Points for Survival in Rituximab Era
- CD 5
- Ki-67

Optimal Cut Points for Survival in Pre-Rituximab Era
- Bcl-2
- Bcl-6
- HLA-DR
- MUM-1

MYC in DLBCL
Savage et al. BLOOD 2009;114:3533

• PFS and OS in MYC+ vs. MYC-
• Time to CNS relapse in MYC+ vs. MYC-

Lunenburg Consortium
Salles et al. BLOOD 2011;117(26):7070

• TMA from 1514 patients
• IHC for BCL2, BCL6, CD5, CD10, MUM1, Ki67, HLA-DR
• Prognostic model using IPI, BCL2, Ki67 identified 4 risk groups
• IPI remains the best index

Lunenburg Consortium
Salles et al. BLOOD 2011;117(26):7070

- TMA from 1514 patients
- IHC for BCL2, BCL6, CD5, CD10, MUM1, Ki67, HLA-DR
- Prognostic model using IPI, BCL2, Ki67 identified 4 risk groups
- IPI remains the best index
Gene Expression Profiling (GEP) in paraffin embedded tissue predicts survival of DLBCL treated with R-CHOP

Rimsa et al BLOOD 2008;112:3425

- Levels of HLA-DR (low is predictive) and c-MYC (high is predictive)

Studies examining prognostic factors in DLBCL

Molecular Biology predicts outcome

- Biologic score based on non-GC subtype, low SPARC, and high microvascular density (Perry et al BLOOD 2012; 120(11): 2250).

- Ox Phos vs. BCR vs. HR by GEP (Monti et al BLOOD 2005; 105:1851)

- CD 20 Expression in DLBCL predicts survival (Johnson et al BLOOD 2009; 113: 3773)

- BCL-6 and p21 are prognostic in DLBCL (Winter et al BLOOD 2006; 107:4207 and Winter et al CCR 2010;16(8):2435)

- HIF 1α predicts outcome in DLBCL (Evens et al J Clin Oncol 2010; 28: 1017)

“Double Hit” Lymphomas

Petrich et al Cancer 2014 (Jul 24; Epub ahead of print)

Table 3: Reported Outcomes From Retrospective Studies With Various Regimens in Patients With Double-hit lymphomas

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. of patients</th>
<th>Effective therapy</th>
<th>Outcome</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson et al (2016) 1</td>
<td>n=132</td>
<td>R-CHOP</td>
<td>n=98</td>
<td>Higher ORR, longer PFS and OS</td>
</tr>
<tr>
<td>Greven et al (2009) 2</td>
<td>n=19</td>
<td>R-CHOP or R-CVP</td>
<td>n=11</td>
<td>Higher ORR, longer PFS and OS</td>
</tr>
<tr>
<td>Greven et al (2008) 3</td>
<td>n=12</td>
<td>RCHOP</td>
<td>n=8</td>
<td>Higher ORR, longer PFS and OS</td>
</tr>
<tr>
<td>Weiner et al (2006) 4</td>
<td>n=30</td>
<td>R-CHOP or R-CVP</td>
<td>n=19</td>
<td>Higher ORR, longer PFS and OS</td>
</tr>
<tr>
<td>Hu et al (2010) 5</td>
<td>n=30</td>
<td>Rituximab, IFN</td>
<td>n=20</td>
<td>Higher ORR, longer PFS and OS</td>
</tr>
<tr>
<td>Greven et al (2007) 6</td>
<td>n=167</td>
<td>R-CHOP or R-CVP</td>
<td>n=111</td>
<td>Higher ORR, longer PFS and OS</td>
</tr>
</tbody>
</table>

Targeting Lymphoma: Tumor Cells and The Microenvironment

Successful targeted therapy needs to identify the biological Achilles heel of the tumor to alter clinical outcomes

- Lymphoma cells are found in a microenvironment exerting positive and negative growth signals

- The tumor can be targeted via cell surface molecules

- The tumor can be targeted by attacking signal or metabolic pathways or critical cellular processes such as apoptosis

IMIDs exert their pleotropic effects by binding to cereblon and altering substrate specificity

- Lenalidomide enhances IkappaB-α binding to cereblon promoting ubiquitination and degradation

Copyright 2014©. National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.
BTK is Involved in BCR and Other Key Signaling Pathways

Multiple Critical Signaling Pathways: Targets for Modern Therapy

Tumor Heterogeneity in DLBCL

- Heterogeneous outcome with R-CHOP
- Cell of origin identifies distinct disease with different outcomes
- Different pathways are activated in distinct subtypes
- Recurrent mutations identify potential targets

Value of the Lymph2Cx assay

- It is a robust 20-gene predictor of GCB vs. ABC built for FFPE tissue samples using NanoString
- Accurately assigns cell-of-origin categories
- Inexpensive (< $40) and can be done in less than 36 hours
- It is highly reproducible between laboratories
- It retains prognostic power compared to Affymetrix GEP of fresh tissue

Patient outcomes according to COO in the independent validation cohort

Copyright 2014©. National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.
Cell of Origin Using NanoString Technology on formalin fixed paraffin embedded tissue
Scott et al of BLOOD 2014;123(8):1214

A 20-gene gene expression based assay accurately and robustly assigns COO subtypes of DLBCL using formalin fixed paraffin embedded tissue

B-cell Receptor Signaling Pathway and potential targets

Card11 coiled-coil mutation
Card11 wild type

Treatment:
- IKKγ inhibitor
- Proteasome inhibitor
- Neddylation inhibitor

Treatment:
- BTK inhibitor
- LYN inhibitor
- SYK inhibitor (+/-)
- PKCγ inhibitor

Lenalidomide for DLBCL: Impact of Cell of Origin

<table>
<thead>
<tr>
<th></th>
<th>ALL</th>
<th>GCB</th>
<th>Non-GCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemic blasts</td>
<td>1.31 ± 0.20</td>
<td>0.99 ± 0.10</td>
<td>1.83 ± 0.20</td>
</tr>
<tr>
<td>CD10</td>
<td>0.31 ± 0.10</td>
<td>0.62 ± 0.10</td>
<td>0.35 ± 0.10</td>
</tr>
<tr>
<td>BCL6</td>
<td>0.53 ± 0.10</td>
<td>0.87 ± 0.10</td>
<td>0.31 ± 0.10</td>
</tr>
<tr>
<td>IRF4</td>
<td>0.43 ± 0.10</td>
<td>0.31 ± 0.10</td>
<td>0.83 ± 0.10</td>
</tr>
</tbody>
</table>

Response
- CR: 6 (15.0) 1 (4.3) 5 (29.4)
- PR: 5 (12.5) 1 (4.3) 4 (23.5)
- SD: 7 (17.5) 7 (30.4) 0
- PD: 21 (52.5) 14 (60.9) 7 (41.2)
- Unknown: 1 (2.5) 0 1 (5.9)

ORR (CR + PR): 11 (27.5) 2 (8.7) 9 (52.9)

PFS, mo
- Median: 2.6 1.7 6.2
- 95% CI: 0.9-4.2 0.3-3.1 2.9-9.6

Hernandez-Ilizaliturri et al, Cancer 2011 117:5058

Lenalidomide: Exploiting synthetic lethality by inhibiting NF-κB and augmenting negative INFβ signaling

Novel agents (e.g., Lenalidomide)
Lenalidomide + R-CHOP (R²-CHOP) in DLBCL or FL: Phase II Study Designs

- Two trials with slightly different dose schedules of lenalidomide
- Compared with historical R-CHOP control (with similar baseline characteristics)

Lenalidomide + R-CHOP21 in Elderly Untreated DLBCL: Efficacy

<table>
<thead>
<tr>
<th>Response</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>45 (92)</td>
</tr>
<tr>
<td>PR</td>
<td>42 (88)</td>
</tr>
<tr>
<td>SD</td>
<td>0</td>
</tr>
<tr>
<td>PD</td>
<td>3 (6)</td>
</tr>
</tbody>
</table>

- Median follow-up: 22 months
 - 2-year OS = 92%
 - 2-year PFS = 73% overall
 - 86% (R1)
 - 83% (R2)

R²-CHOP Treatment Schedule

Cycle = 21 days; 6 Cycles of Treatment

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose</th>
<th>Route</th>
<th>Day of Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenalidomide</td>
<td>25 mg</td>
<td>po</td>
<td>1–10</td>
</tr>
<tr>
<td>Rituximab</td>
<td>375 mg/m²</td>
<td>IV</td>
<td>1</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>750 mg/m²</td>
<td>IV</td>
<td>1</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>50 mg/m²</td>
<td>IV</td>
<td>1</td>
</tr>
<tr>
<td>Vincristine</td>
<td>1.4 mg/m²</td>
<td>IV</td>
<td>1</td>
</tr>
<tr>
<td>Prednisone</td>
<td>100 mg/m²</td>
<td>po</td>
<td>1–5</td>
</tr>
<tr>
<td>Pegfilgrastim</td>
<td>6 mg</td>
<td>SC</td>
<td>2</td>
</tr>
<tr>
<td>Asparin</td>
<td>325 mg</td>
<td>po</td>
<td>daily</td>
</tr>
</tbody>
</table>

Lenalidomide + R-CHOP-21 in Elderly Untreated DLBCL: Conclusions

- The addition of 15 mg lenalidomide on days 1–14 to R-CHOP 21 is safe, feasible, and effective in elderly untreated DLBCL patients
- The primary objective of the phase 2 study was met
 - ORR 92% (86% CR)
- At median follow-up of 22 months, 2-year OS = 92% and 2-year PFS = 73%
- Addition of lenalidomide did not impair administration of R-CHOP 21
- Lenalidomide + R-CHOP-21 efficacy in elderly DLBCL patients needs to be investigated in a large phase 3 randomized trial

R²-CHOP - Eligibility

- ≥18 years of age (no upper age limit)
- Newly diagnosed CD20 positive stages II-IV DLBCL or grade 3 FL
- Measurable disease
- ECOG performance status 0–2
- Preserved organ function
- Patients with a history of life threatening or recurrent thrombosis/embolism were excluded unless they were on anticoagulation during the treatment

R²-CHOP – Response Rates (N=47 evaluable patients)

- 47 of 51 patients were evaluable
- 4 non-evaluable patients:
 - 3 refusals (refusal of travel to treatment center)
 - 1 death before evaluation

Copyright 2014©, National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.
Conclusions

- Lenalidomide + R-CHOP (R2-CHOP) is well tolerated, including in elderly patients
- Efficacy appears to be promising when compared to R-CHOP
- Addition of lenalidomide may ameliorate the negative effect of non-GCB phenotype on outcome
- Randomized study will be required to evaluate R2-CHOP vs. R-CHOP (ECOG 1412 in development)

E1412: RL-CHOP vs. R-CHOP

N=100 evaluable patients

Ibrutinib (PCI-32765): First-in Class Inhibitor of BTK

- Forms a specific and irreversible bond with cysteine-481 in BTK
- Highly potent BTK inhibition at IC50 = 0.5 nM
- Orally administered with once daily dosing resulting in 24-hr target inhibition
- Blocks mantle cell migration and adhesion
- Blocks pERK, pJNK, and NF-kB pathways in mantle cell lymphoma lines.
Ibrutinib in Rel/Ref ABC-subtype DLBCL: Phase II Study Design

- Relapsed/refractory de novo DLBCL
- Progressive disease (PD) after ASCT or ineligible for ASCT
- Archival tissue for central review
- No primary mediastinal DLBCL, transformed DLBCL or CNS involvement

- Gene expression profiling of biopsy tissues using Affymetrix arrays to identify DLBCL subtype (ABC, GCB, unclassifiable)
- Mutations in tumor samples analyzed by PCR and DNA sequencing
- ABC DLBCL: tumors analyzed for mutations in CD79B, MYD88 and CARD11 genes

Ibrutinib: 560 mg/d, PO

ASCT = autologous stem cell transplant

Ibrutinib in Rel/Ref ABC-subtype DLBCL: Efficacy

<table>
<thead>
<tr>
<th>Efficacy (N=70)</th>
<th>ABC subtype (n=35)</th>
<th>GCB subtype (n=29)</th>
<th>Total (N = 70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical to prior treatment</td>
<td>41%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>41%</td>
<td>3%</td>
<td>23%</td>
</tr>
<tr>
<td>PR</td>
<td>27%</td>
<td>0%</td>
<td>56%</td>
</tr>
<tr>
<td>ORR</td>
<td>26%</td>
<td>0%</td>
<td>46%</td>
</tr>
<tr>
<td>Median DL, mo</td>
<td>0.9</td>
<td>3.5</td>
<td>NA</td>
</tr>
</tbody>
</table>

R-CHOP vs R-CHOP+ibrutinib in non-GC DLBCL is ongoing.

Ibrutinib in Rel/Ref ABC-subtype DLBCL: Conclusions

- Ibrutinib showed a clinically meaningful response rate in relapsed/refractory ABC DLBCL, but not in other molecular subtypes
 - ORR: 23% all patients, 41% ABC (17% CR), 5% GCB (all PR)
 - Responses by mutational status
 - Did not require CD79b mutation
 - CARD11 mutation did not respond, suggesting an impact upstream of BCR
 - MYD88 mutations seemed to cause resistance
 - Results were consistent with an essential role of BCR signaling in ABC DLBCL
 - Future clinical trials of ibrutinib in DLBCL should screen for DLBCL subtype

Ibrutinib in Rel/Ref ABC-subtype DLBCL: Waterfall Plot

- Only includes pts with post baseline BM measurements
- * Best responder was PD due to clinical progression

Phase III Validation: R-CHOP ± Ibrutinib for Non-GC DLBCL

Non-GCB DLBCL

Based on Hans model (CD10, BCL6, MuM1/IRF4A)

R-CHOP + Placebo

R-CHOP + Ibrutinib

CHOP-R + bortezomib as initial therapy for diffuse large B-cell lymphoma (DLBCL)

- Treatment: Bortezomib 0.7 to 1.3 mg/m² on Day 1 & 4 of each R-CHOP-21 cycle
- Patient characteristics (n = 40):

<table>
<thead>
<tr>
<th>Age</th>
<th>56 (20-87) years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage III/IV</td>
<td>88%</td>
</tr>
<tr>
<td>Elevated LDH</td>
<td>75%</td>
</tr>
<tr>
<td>High int HIGH IPI</td>
<td>50%</td>
</tr>
<tr>
<td>1.3 mg/m²</td>
<td>70%</td>
</tr>
<tr>
<td>Non-germinal center histology</td>
<td>56%</td>
</tr>
</tbody>
</table>

Abstract

et al. (ASH) 2013;122: Abstract 4080

Randomized evaluation of molecular guided therapy in DLBCL with bortezomib

- All patients undergo biopsy for profiling at diagnosis
- All patients receive cycle 1 R-CHOP
- Randomized from cycle #2-6 to receive bortezomib 1.3 mg/m² d 1 and 8
- All patients initially randomized, designed to close for GCB subjects if evidence of futility
- Up to 940 patients, minimum 260 ABC subtype

Antibody Drug Conjugate: Mechanism of Action

- Drug or toxin
- Protease-cleavable linker
- Monoclonal antibody to desired target
- ADC binds to target
- ADC-target complex traffics to lysosome
- Drug/toxin is released
- E.g. MMAE disrupts
- Microtubule network
- Drug/toxin is released
- E.g. MMAE disrupts
- Microtubule network
- G2/M cell cycle arrest
- Apoptosis

Previous Phase I/II: Single Agents

- CD 22
- CD 79b

ROMULUS Study Design

- R-CHOP 21 x6
- Bortezomib 1.3 mg/m², d 1, 4
- Rituximab 375 mg/m², d 1
- Cyclophosphamide 750 mg/m², d 1
- Doxorubicin 50 mg/m², d 1
- Prednisone 1.4 mg/m², d 1
- Vincristine 1.4 mg/m², d 1
- Rituximab 100 mg/m², d 1-5

PYRAMID study design

- DLBCL diagnosis & subtyping
- Randomize 1:1
- Not enrolled
- Follow-up every 3 months for 2 yrs

Randomized evaluation of molecular guided therapy in DLBCL with bortezomib

- All patients undergo biopsy for profiling at diagnosis
- All patients receive cycle 1 R-CHOP
- Randomized from cycle #2-6 to receive bortezomib 1.3 mg/m² d 1 and 8
- All patients initially randomized, designed to close for GCB subjects if evidence of futility
- Up to 940 patients, minimum 260 ABC subtype
Investigator-Assessed Best Responses in Treated Patients

<table>
<thead>
<tr>
<th></th>
<th>DLBCL</th>
<th>FL</th>
</tr>
</thead>
<tbody>
<tr>
<td>R+CD22 ADC</td>
<td>R+CD79b ADC</td>
<td></td>
</tr>
<tr>
<td>(N=42)</td>
<td>(N=21)</td>
<td></td>
</tr>
<tr>
<td>Objective response, n (%)</td>
<td>24 (57%)</td>
<td>22 (58%)</td>
</tr>
<tr>
<td>Complete Response</td>
<td>10 (24%)</td>
<td>13 (62%)</td>
</tr>
<tr>
<td>95% CI</td>
<td>5-15%</td>
<td>11-32%</td>
</tr>
<tr>
<td>Partial Response</td>
<td>14 (33%)</td>
<td>11 (52%)</td>
</tr>
<tr>
<td>95% CI</td>
<td>20-50%</td>
<td>33-14%</td>
</tr>
<tr>
<td>Stable disease, n (%)</td>
<td>3 (7%)</td>
<td>6 (29%)</td>
</tr>
<tr>
<td>95% CI</td>
<td>0-10%</td>
<td>5-40%</td>
</tr>
<tr>
<td>Progressive disease, n (%)</td>
<td>7 (17%)</td>
<td>6 (29%)</td>
</tr>
<tr>
<td>Median Duration of Response, mo. (95% CI)</td>
<td>6.0 (2.0-12.2)</td>
<td>6.3 (2.4-10.1)</td>
</tr>
</tbody>
</table>

*Patients who received 1 dose of study treatment; patients unable to evaluate did not have a post-baseline tumor assessment.

NR = Not reached

Summary

- We are rapidly moving beyond R-CHOP for all patients
- Determination of cell of origin is essential for patient selection.
- Targeted agents interact with specific pathways necessitating patient selection based on either cell of origin or mutation status (or both!)
- Several agents (lenalidomide, ibrutinib, and bortezomib) appear to overcome the adverse impact of the non-GCB DLBCL

SGN-CD19A: Dose Escalation

- No dose limiting toxicity (DLT) observed in Cycle 1
- Enrollment to 6 mg/kg discontinued due to later cycle adverse events
- Doses 3, 4, and 5 mg/kg expanded

Conclusions

- ORR 30% (11 of 37 patients)
- CR 16% (6 of 37 patients)
- SGN-CD19A is generally well tolerated
 - No DLTs have been observed to date in Cycle 1
 - Superficial corneal changes and ocular symptoms managed with steroid eye drops and dose modifications
 - Grade 3/4 anemia, thrombocytopenia, or neutropenia each observed in <10% of patients
- Preclinical data demonstrate synergy with relevant standard of care agents
- Encouraging antitumor activity with manageable toxicities enables novel combination regimens