Dust continuum and [CII] line emission from ASPECS: The ALMA Spectroscopic Survey in the Hubble UDF

M. Aravena, R. Decarli, F. Walter, R. Bouwens, C. Carilli
and the ASPECS team

Press Release today at 11am PST
State of the art: ALMA continuum millimeter deep fields

SXDF-UDS-CANDELS 1.1-mm survey: 1.5-arcmin2 map down to 1σ \sim50 µJy per 0.5" beam (Kohno+16; Hatsukade+16; Yamaguchi+16)

Hubble UDF 1.3-mm survey: 4.5-arcmin2 map down to 1σ \sim35 µJy per 0.7" beam (Dunlop+16).
The ASPECS different strategy:

- Spectral scan over the full bands 3 and 6 in a 1 arcmin² region in the UDF/XDF field.
- Frequency coverage covers CO/[CI] at 0<z<6 and and [CII] line at 6<z<8.
- Obtain ultra-deep continuum at 1.2-mm by collapsing the 212-272 GHz cube.
ASPECS 1.2-mm continuum:

- Nine sources detected at 1.2-mm down to S/N>3.5 (1 σ=13 µJy) within 1 arcmin² area, with a resolution of 1-2"
- One source detected at 3-mm within 1 arcmin² area, with a resolution of ~3"

Aravena et al. (2016a)
ASPECS 1.2-mm continuum: Dusty star forming galaxies (DSFGs)

The depth of HST images allow us to find counterparts for 7/9 mm sources.
Continuum detected galaxies lie in the "main sequence" (no “starbursts”)
- Galaxies redshifts between z=1.0-3.0
- Redshift distribution implies a median redshift of $z_{\text{med}}=1.7+/-0.4$ (brighter samples indicate at $z_{\text{med}}\sim2.0-3.0$)
- Stacking analysis suggest underlying millimeter population is dominated by galaxies at $z=1-2$, and typical stellar masses $>10^{9.5} \, M_{\odot}$ and SFR $> 10 \, M_{\odot} \, \text{yr}^{-1}$.

Aravena et al. (2016a)
ASPECS 1.2-mm continuum: the Extragalactic Background Light (EBL)

Number counts a factor of 2 lower than other studies. ASPECS is able to resolve out to 80% of the EBL at 1mm.
There appear to be systematic differences between different estimates of the gas masses compared the CO derived H2 masses.
Stacking analysis of z=2-10 galaxies to measure average L_{IR} and specifically the infrared excess $IRX = \log(L_{IR}/L_{UV})$ as a function of stellar mass and UV slope (β).

Constraints on the shape of low-mass galaxies SEDs. Our results suggest that faint high-z galaxies show less dust emission than any local template.

Bouwens et al. (2016)
Only galaxies with $M^* > 10^{9.75} \, M_\odot$ tend to have $>50\%$ of their energy output at FIR. Results consistent with an SMC IRX-\(\beta\) relation for high mass galaxies, but imply lower IRX for low mass galaxies.

Bouwens et al. (2016)
ASPECS 1.2-mm continuum: Dust obscuration properties of faint galaxies at $z>2$

Bouwens et al. (2016)
ASPECS [CII] line search at z=6-8

Specific search for [CII] line emission based on:

Blind candidates: Significant 1-mm line peaks (S/N>5.3) associated to optically faint sources at z\textsubscript{phot}=5.5-8.5 or without counterparts at all. Result: 2.

Optically-selected candidates: 1-mm line peaks (S/N>4.5) associated to optical dropouts with z\textsubscript{phot}=5.5-8.5. Result: 12.

Limiting luminosities for [CII] and high-J CO lines in the redshift range 6-8

Aravena et al. (2016b)
ASPECS [CII] line search at $z=6-8$: Blind candidates

Candidate [CII] line emission in the two "blind" candidates. Aravena et al. (2016b)

Multi-wavelength postage stamps around the candidate [CII] line peak. No obvious counterpart is seen in either case.
ASPECS [CII] line search at z=6-8: optical dropout candidates

Aravena et al. (2016b)
ASPECS [CII] line search at $z=6-8$: optical dropout candidates

Aravena et al. (2016b)
ASPECS [CII] line search at z=6-8: possible blind detection at z=6.3?

Aravena et al. (2016b)
ASPECS [CII] line search at z=6-8: possible blind detection at z=6.3?

Aravena et al. (2016b)
ASPECS [CII] line search at \(z=6-8\): SFRs and constraints on [CII] number counts

Most source candidates have too low SFRs for their candidate [CII] line emission compared to previous high-z detections. Even if one of these sources is real, it already contradicts with models of galaxy formation.
ASPECS **very deep**: ultra deep 1-mm pointing and scan in the Hubble UDF

Preliminary continuum image:

Continuum image reach down to $\sim 4-5\mu$Jy rms (current image tapered to 1’’): Few sources detected in the field by going 2-3x deeper.

Full spectral scan in band-6 will be able to confirm/reject a few [CII] line candidates

CO line search to complement and confirm line candidates
ASPECS Large Program:

- ASPECS LP covers 5x larger area at similar depth than our pilot program. Capitalization on results and many unexplored areas.
- We expect to detect ~50 galaxies at >3.5s in 1-mm continuum
- Increased sensitivity down to 9 \(\mu \)Jy in the pilot area
- Continuum stacking in ~10000 SF galaxies
- Continuum stacking in ~1000 LBGs at z=2-6 (IRX vs \(\beta \))
- Access to [CII] search + continuum in 60 dropouts at z=6-8
- Invisible galaxies?
- Etc…
The ASPECS pilot program results and science areas are summarized in our 7 papers (ApJ in press):

- Survey description, observing strategy and blind molecular line search (Walter et al. 2016)
- Molecular gas and properties of individual galaxies (Decarli et al. 2016a)
- CO luminosity function and cosmic density of molecular gas (Decarli et al. 2016b)
- Dust continuum emission and properties of mm-selected galaxies (Aravena et al. 2016a)
- Search for [CII] line emission in z=6-8 galaxy candidates (Aravena et al. 2016b)
- Constraints on the dust emission in LBGs at z=2-10 (Bouwens et al. 2016)
- Implications for CO intensity mapping and CMB spectral distortions (Carilli et al. 2016)