The Multispot Rapid HIV-1/HIV-2 Differentiation Assay is Comparable with the Western Blot and an Immunofluorescence Assay at Confirming HIV Infection in a Prospective Study in Three Regions of the United States

Mark W. Pandori, Emily Westheimer, Cindy Gay, Nicholas Moss, Jie Fu, Lisa B. Hightow-Weidman, Jason Craw, Laura Hall, Francesca R. Giancotti, Jennifer A. Embry, Brian Louie, Pragna Patel, S. Michele Owen, Philip J. Peters for the STOP study group

2012 HIV Diagnostics Conference, Atlanta, GA – December 13, 2012

Disclaimer: The findings and conclusions in this presentation are those of the author and do not necessarily represent the views of the Centers for Disease Control and Prevention

Disclosure: No relevant financial relationships
The STOP Study Methods

The STOP Study: Screening Targeted Populations to Interrupt On-going Chains of HIV Transmission with Enhanced Partner Notification

• On-going prospective study evaluating methods to detect acute HIV infection linked to enhanced partner services in New York City, San Francisco, and North Carolina

• Participants were > 12 years and receiving HIV testing at one of 12 HIV testing venues in sexually transmitted infection clinics and community-based HIV testing programs
The STOP Study Methods

The STOP Study: Screening Targeted Populations to Interrupt On-going Chains of HIV Transmission with Enhanced Partner Notification

- (I guess better than the “STPTIOCHTEPN” Study….)

- On-going prospective study evaluating methods to detect acute HIV infection linked to enhanced partner services in New York City, San Francisco, and North Carolina

- Participants were ≥ 12 years and receiving HIV testing at one of 12 HIV testing venues in sexually transmitted infection clinics and community-based HIV testing programs
The STOP Study Methods

The STOP Study: **S**creening **T**argeted Populations to Interrupt **O**n-going Chains of HIV Transmission with Enhanced **P**artner Notification

- On-going prospective study evaluating methods to detect acute HIV infection linked to enhanced partner services in New York City, San Francisco, and North Carolina
- Participants were > 12 years and receiving HIV testing at one of 12 HIV testing venues in sexually transmitted infection clinics and community-based HIV testing programs
HIV Testing Performed

• Screening with the Architect (Abbott), an HIV-1/HIV-2 combination Antigen/Antibody (Ag/Ab) immunoassay

• Specimens with repeatedly reactive Architect results were tested with Multispot and either an HIV-1 Western blot (Bio-Rad) or an immunofluorescence assay (IFA).

• Specimens with a reactive Architect result but a negative confirmatory result (i.e., negative Multispot, Western blot, or immunofluorescence assay results) were resolved with an HIV-1 nucleic acid amplification test (NAAT)
Objectives

1. To compare the Multispot (Bio-Rad), a rapid HIV-1/HIV-2 antibody differentiation assay, as a confirmatory test with the HIV-1 WB and IFA in a prospective study.

2. To evaluate the yield of the HIV-1 nucleic acid amplification assay (NAAT) for specimens with discordant screening and confirmatory results in a prospective study.
Architect Ag/Ab Combo HIV Test Results - New York City, San Francisco, and North Carolina, September 2011 – 2012

Screening with Architect Ag/Ab Combo (4th generation) HIV Test
N=37,876

Repeatedly Reactive Architect
n=654 (1.7%)

Negative Architect
n= 37,222
Screening with Architect Ag/Ab Combo (4th generation) HIV Test
N=37,876

Repeatedly Reactive Architect
n=654 (1.7%)

Multispot HIV-1/HIV-2 differentiation assay testing

Negative Architect
n=37,222
Multispot HIV-1/HIV-2 Differentiation Assay

Architect Reactive tested with Multispot
N=654

- HIV-1 Reactive
 n=545 (83.3%)
- HIV Reactive but Undifferentiated
 n=19 (1.7%)
- HIV-2 Reactive
 n=0 (0%)
- Non- Reactive
 n=90 (13.8%)
Multispot HIV-1 Reactive Results

Architect Reactive tested with Multispot
N=654

- HIV-1 Reactive
 n=545 (83.3%)
 - Both HIV-1 Spots
 n=536 (98.3%)
 - Recombinant HIV-1 Spot only
 n=6 (1.1%)
 - HIV-1 Peptide Spot only
 n=3 (0.6%)

- HIV Reactive but Undifferentiated
 n=19 (1.7%)

- HIV-2 Reactive
 n=0 (0%)

- Non-Reactive
 n=90 (13.8%)
Architect Reactive tested with Multispot
N=654

- HIV-1 Reactive
 - n=545 (83.3%)
 - Both HIV-1 Spots
 - n=536 (98.3%)
 - Western blot (n=388)
 - positive 384 (99.0%)
 - indeterminate 3* (0.8%)
 - negative 1* (0.2%)
 * NAAT reactive

- HIV Reactive but Undifferentiated
 - n=19 (1.7%)
 - Recombinant HIV-1 Spot only
 - n=6 (1.1%)
 - IFA (n=148)
 - positive 142 (95.9%)
 - indeterminate 5* (3.4%)
 - negative 1* (0.7%)
 * NAAT reactive

- HIV-2 Reactive
 - n=0 (0%)

- Non-Reactive
 - n=90 (13.8%)
Multispot HIV-1 Reactive with One Spot

Architect Reactive tested with Multispot
N=654

- HIV-1 Reactive
 n=545 (83.3%)
 - Both HIV-1 Spots
 n=536 (98.3%)
 - Western blot (n=3) positive 3
 - Recombinant HIV-1 Spot only
 n=6 (1.1%)
 - IFA (n=3) positive 3
- HIV Reactive but Undifferentiated
 n=19 (1.7%)
- HIV-2 Reactive
 n=0 (0%)
- Non-Reactive
 n=90 (13.8%)
HIV Reactive but Undifferentiated
n=19 (1.7%)

HIV-2 Reactive
n=0 (0%)

Non-Reactive
n=90 (13.8%)

HIV-1 Reactive
n=545 (83.3%)

Both HIV-1 Spots
n=536 (98.3%)

Recombinant HIV-1 Spot only
n=6 (1.1%)

HIV-1 Peptide Spot only
n=3 (0.6%)

Western blot (n=3)
positive 2
negative 1*

* One false positive result (0.18% of all HIV-1 reactives; 95% CI: 0.00% - 0.98%)
Details: Western blot and NAAT negative on same specimen, repeat Architect and NAAT negative on new specimen one week later.
Multispot HIV Reactive but Undifferentiated

Architect Reactive tested with Multispot
N=654

- HIV-1 Reactive
 n=545 (83.3%)

- HIV Reactive but Undifferentiated
 n=19 (1.7%)

- HIV-2 Reactive
 n=0 (0%)

- Non- Reactive
 n=90 (13.8%)

Western blot (n=14) positive 14

IFA (n=5) positive 5
Multispot HIV Reactive but Undifferentiated

Architect Reactive tested with Multispot
N=654

- HIV-1 Reactive
 n=545 (83.3%)

- HIV Reactive but Undifferentiated
 n=19 (1.7%)

- HIV-2 Reactive
 n=0 (0%)

- Non-Reactive
 n=90 (13.8%)

- HIV-1 Reactive at 1:10 dilution
 n=17

- HIV-1 Reactive at 1:100 dilution
 n=1

- Undifferentiated at 1:100 dilution
 n=1

HIV-1 Western blot: positive
HIV-1 NAAT: reactive
HIV-2 EIA: reactive
HIV-2 Western blot: pending
Multispot Non-Reactive

Architect Reactive tested with Multispot
N=654

HIV-1 Reactive
n=545 (83.3%)

HIV Reactive but Undifferentiated
n=19 (1.7%)

HIV-2 Reactive
n=0 (0%)

Non-Reactive
n=90 (13.8%)

NAAT reactive
n = 47 (52.2%)

NAAT negative
n = 43 (47.8%)
Multispot Non-Reactive with NAAT Reactive

Architect Reactive tested with Multispot
N=654

HIV-1 Reactive
n=545 (83.3%)

HIV Reactive but Undifferentiated
n=19 (1.7%)

HIV-2 Reactive
n=0 (0%)

Non-Reactive
n=90 (13.8%)

NAAT reactive
n = 47 (52.2%)

NAAT negative
n = 43 (47.8%)

Western blot (n=22)
- positive 2 (9%)
- indeterminate 5 (23%)
- negative 15 (68%)

IFA (n=25)
- positive 2 (8%)
- indeterminate 1 (4%)
- negative 22 (88%)
Multispot Non-Reactive; NAAT Non-Reactive

Architect Reactive tested with Multispot
N=654

HIV-1 Reactive
n=545 (83.3%)

HIV Reactive but Undifferentiated
n=19 (1.7%)

HIV-2 Reactive
n=0 (0%)

Non-Reactive
n=90 (13.8%)

NAAT reactive
n = 47 (52.2%)

NAAT negative
n = 43 (47.8%)

Western blot (n=15)
negative 15

IFA (n=16)
negative 16
Multispot Non- Reactive; NAAT Non-Reactive

Architect Reactive tested with Multispot
N=654

- **HIV-1 Reactive**
 - n=545 (83.3%)

- **HIV Reactive but Undifferentiated**
 - n=19 (1.7%)

- **HIV-2 Reactive**
 - n=0 (0%)

- **Non-Reactive**
 - n=90 (13.8%)

NAAT reactive
- n = 47 (52.2%)

NAAT negative
- n = 43 (47.8%)

Western blot (n=15)
- negative 15

IFA (n=16)
- negative 16

Remaining 12 were not tested by Western blot
Multispot HIV-1/HIV-2 Differentiation Assay

Architect Reactive tested with Multispot
N=654

- HIV-1 Reactive
 n=545 (83.3%)

- HIV Reactive but Undifferentiated
 n=19 (1.7%)

- HIV-2 Reactive
 n=0 (0%)

- Non-Reactive
 n=90 (13.8%)

- NAAT reactive
 n = 47 (52.2%)

- NAAT negative
 n = 43 (47.8%)

- 610 / 654 Architect-positive specimens confirmed by Western blot, IFA or NAAT
STOP Study HIV Laboratory Algorithm Substudy

<table>
<thead>
<tr>
<th>Multispot</th>
<th>IFA / Western blot</th>
</tr>
</thead>
<tbody>
<tr>
<td>-- Positive for 563 / 610 (92%) confirmed infections</td>
<td>-- Positive for 557 / 610 (91%) confirmed infections</td>
</tr>
<tr>
<td>-- 1 “indeterminate” (undifferentiated HIV-1/2)</td>
<td>-- 14 indeterminate</td>
</tr>
<tr>
<td>-- 1 False Positive HIV-1 Peptide spot</td>
<td>-- 0 False Positives</td>
</tr>
</tbody>
</table>
Multispot vs. HIV-1 Western Blot to confirm true positive HIV infections (n=429)

<table>
<thead>
<tr>
<th></th>
<th>Multispot Reactive</th>
<th>Multispot Non-Reactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Blot Positive</td>
<td>403 (93.9%)</td>
<td>2 (0.5%)</td>
</tr>
<tr>
<td>Western Blot Indeterminate</td>
<td>3 (0.7%)</td>
<td>5 (1.2%)</td>
</tr>
<tr>
<td>Western Blot Negative</td>
<td>1 (0.2%)</td>
<td>17 (4.0%)</td>
</tr>
</tbody>
</table>

One false positive Multispot result not included
McNemar’s exact p-value = 0.69
Multispot vs. HIV-1 Immunofluorescence Assay (IFA) to confirm true positive HIV infections (n=181)

<table>
<thead>
<tr>
<th></th>
<th>Multispot Reactive</th>
<th>Multispot Non- Reactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFA Reactive</td>
<td>150 (82.9%)</td>
<td>2 (1.1%)</td>
</tr>
<tr>
<td>IFA Indeterminate</td>
<td>5 (2.8%)</td>
<td>1 (0.6%)</td>
</tr>
<tr>
<td>IFA Non-Reactive</td>
<td>1 (0.6%)</td>
<td>22 (12.2%)</td>
</tr>
</tbody>
</table>

McNemar’s exact p-value = 0.29
• Multispot was comparable to Western blot and IFA for confirming HIV infection

• One of nine Multispot results, however, with only one HIV-1 spot was false positive (one of three peptide-only positive specimens)
Multispot False Positive: Case Details

- Male, in his 50s, originally from West Africa, living in US for 10 years, self-reported a negative HIV test result on immigration, history of syphilis treated 10 years ago

<table>
<thead>
<tr>
<th>Initial HIV Testing</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid EIA (Oraquick)</td>
<td>negative</td>
</tr>
<tr>
<td>Architect</td>
<td>repeatedly reactive (S/CO: 3.75 / 1.37 / 1.39)</td>
</tr>
<tr>
<td>Multispot</td>
<td>HIV-1 reactive (HIV-1 peptide only)</td>
</tr>
<tr>
<td>3(^{rd}) gen EIA (BioRad)</td>
<td>negative</td>
</tr>
<tr>
<td>Pooled NAAT (Aptima)</td>
<td>negative</td>
</tr>
<tr>
<td>HIV-1 viral load (Abbott m2000)</td>
<td>undetectable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Follow-up HIV Testing (2 weeks later)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architect</td>
<td>negative</td>
</tr>
<tr>
<td>HIV-1 viral load (Abbott m2000)</td>
<td>undetectable</td>
</tr>
</tbody>
</table>
One other interesting finding

Are all MS-confirmed infections positive for HIV RNA?
Multispot HIV-1 Reactive Tested with NAAT—
New York City specimens only, September 2011 – 2012

Architect Reactive tested with Multispot
N=346

- HIV-1 Reactive
 - n=301 (87.0%)
 - NAAT reactive
 - n = 296 (98.3%)
 - NAAT negative
 - n = 5 (1.7%)

- HIV Reactive but Undifferentiated
 - n=14 (4.0%)

- HIV-2 Reactive
 - n=0 (0%)

- Non- Reactive
 - n=31 (9.0%)
<table>
<thead>
<tr>
<th></th>
<th>Architect</th>
<th>Multispot</th>
<th>Rapid – Oraquick</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reactive</td>
<td>HIV-1 Reactive</td>
<td>Reactive</td>
<td>New diagnosis, partner of one year known HIV positive, history of drug use, not asked about ART use, did not link to care</td>
</tr>
<tr>
<td>2</td>
<td>Reactive</td>
<td>HIV-1 Reactive</td>
<td>Reactive</td>
<td>New diagnosis, visiting from Caribbean, documented negative test in 2010</td>
</tr>
<tr>
<td>3</td>
<td>Reactive</td>
<td>HIV-1 Reactive</td>
<td>Reactive</td>
<td>Previous positive, diagnosed in 1999, re-establishing care, unclear if on ART, viral load 9 days after HIV testing undetectable</td>
</tr>
<tr>
<td>4</td>
<td>Reactive</td>
<td>HIV-1 Reactive</td>
<td>Reactive</td>
<td>Previous positive, diagnosed in 2008, refused interview, unknown if on ART, linked to care</td>
</tr>
<tr>
<td>5</td>
<td>Reactive</td>
<td>HIV-1 Reactive</td>
<td>Reactive</td>
<td>Previous positive, diagnosed in 2009, refused interview, unknown if on ART</td>
</tr>
</tbody>
</table>
Conclusions

- Multispot had comparable frequency of false negative results as Western blot and IFA
Conclusions

- Multispot had comparable frequency of false negative results as Western blot and IFA
- Regardless of the confirmatory assay used, NAAT is necessary additional diagnostic test
Conclusions

- Multispot had comparable frequency of false negative results as Western blot and IFA
- Regardless of the confirmatory assay used, NAAT is necessary additional diagnostic test
- **NAAT successfully resolved all of the discordant screening and confirmatory results as either:**
 - false negative confirmatory test (i.e., acute HIV) or
 - false positive Architect result
Acknowledgments

University of North Carolina at Chapel Hill
- Cynthia Gay, MD, MPH (PI)
- Lisa Hightow-Weidman, MD, MPH
- Peter Leone, MD
- Jennifer Embry
- Joann Kuruc, MSN,
- John Schmitz, PhD
- William Miller, MD, PhD
- Evelyn Foust, MPH
- Mike S Cohen, MD

New York City Department of Health and Mental Hygiene
- Emily Westheimer, MSc (PI)
- Benjamin Tsoi, MD, MPH
- Blayne Cutler, MD, PhD
- Anita Radix, MD, MPH (Callen Lorde)
- Demetre Daskalakis, MD (NYU, MSHP)
- William Oleszko, PhD
- Eunmee Chun, MD, MPH
- Christine Borges, MPH
- Julia A. Schillinger, MD, MSc
- Susan Blank, MD, MPH
- Kate Washburn, MPH
- Kimberly Johnson, MPH
- Jessica Borrelli, MPH
- Martin Markowitz, MD (Aaron Diamond)

San Francisco Department of Public Health
- Nicholas Moss, MD (PI)
- Mark Pandori, PhD
- Kyle Bernstein, PhD, ScM
- Nayla Raad, MA
- Emalie Huriaux, MPH
- Grant Colfax, MD
- Susan Philip, MD, MPH
- James G. Kahn, MD, MPH (UCSF)
- Chris Pilcher, MD, MPH (UCSF)
- Susan Little, MD (UCSD)

Centers for Disease Control and Prevention
- Philip Peters, MD (Project Officer)
- Laura Hall, MPH
- Jason Craw, MPH
- Pragna Patel, MD
- S. Michelle Owen, PhD
- Bernie Branson, MD
- Bill M. Switzer, MPH
- Rich Haaland, PhD
- John Brooks, MD
- Ryan E. Wiegand, MS
- Angela Hutchinson, PhD, MPH
- Paul Farnham, PhD
- Matthew Hogben, PhD
- Rachel Kachur, MPH