Is It Always Necessary for the ARCHITECT 4th-Generation HIV-1/2 Ag/Ab Combo Assay to be Repeatedly Reactive before Moving Forward in the Centers for Disease Control and Prevention (CDC) HIV Screening Algorithm?

Eric M. Ramos MD, MS
Department of Laboratory Medicine, University of Washington, Seattle
Introduction

Currently, there are three Food and Drug Administration (FDA) approved 4th-generation assays:

- The Abbott Architect HIV Ag/Ab Combo assay (June, 2010) Chemiluminescent magnetic microparticle-based immunoassay (CMIA)
- The Bio-Rad GS HIV Combo Ag/Ab assay (July, 2011) Enzyme immunoassay (EIA)
- The ADVIA Centaur HIV Ag/Ab Combo (CHIV) assay (June, 2015) CMIA
4th Gen Testing Algorithm for HIV-1 & HIV-2

Sensitive HIV-1/2 immunoassay (eg, fourth-generation Ag/Ab assay)

≥1.0 (+)
(-) <1.0 ←------- S/CO

HIV-1/HIV-2 differentiation immunoassay

HIV-1 (+)
HIV-1 antibodies detected
Initiate care (and viral load)

HIV-2 (+)
HIV-2 antibodies detected
Initiate care

-HIV-1 & -2
RNA

RNA (+)
Acute HIV-1 infection
Initiate care

RNA (-)
Negative for HIV-1

“Orthogonal”

e.g., Multispot test with consideration for a more rapid turn-around-time; Geenius identifies HIV-1 (gp160, gp41, p31, p24) and HIV-2 (gp140, gp36)

- Branson, JAIDS 2010;55:S102-5
- Clinical & Laboratory Standards Institute 2011, M53-A: Vol.31 No.13
S/CO Distribution by Stage of HIV-1 Infection

Ramos et al. Poster CROI 2015

N = 199

A: ARCHITECT
B: GSCombo

<table>
<thead>
<tr>
<th>Infection Status</th>
<th>Negative</th>
<th>Acute</th>
<th>Recent</th>
<th>Established</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>99</td>
<td>35</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>Median</td>
<td>0.11</td>
<td>0.27</td>
<td>16.6</td>
<td>384</td>
</tr>
<tr>
<td>IQR</td>
<td>0.09, 0.13</td>
<td>4.7, 74</td>
<td>5.8, 14</td>
<td>218, 449</td>
</tr>
<tr>
<td></td>
<td>0.25, 0.29</td>
<td>14</td>
<td>218, 449</td>
<td>688, 1008</td>
</tr>
</tbody>
</table>
Objectives

Since the ARCHITECT S/CO increases initially with viral replication (HIV-1 p24 antigen) and then following the rise in HIV specific antibodies, we sought to:

- Determine the correlation of the ARCHITECT S/CO values between the first, second and third replicates
- Determine whether the ARCHITECT S/CO value could be used to modify this requirement for replicate testing
- Determine a S/CO threshold for a single test without losing ARCHITECT assay sensitivity or specificity, shortening the turn-around time for moving in the HIV screening algorithm.
Methods

- A retrospective analysis was done using ARCHITECT test results obtained from our primary screening HIV diagnostic algorithm between May 2011 to September 2015

- Specimens were obtained from an academic hospital referral laboratory and research HIV-1 vaccine trials

- The testing algorithm interpretation for S/CO:
 - Initially reactive (S/CO ≥1.0) both replicate S/CO <1.0 was considered non-reactive;
 - One or both of the replicates ≥1.0 was considered reactive and tested with the discriminatory Multispot test, and HIV-1 RNA when indicated.
Results

- From 43,518 specimens tested, 975 were initially S/CO \(\geq 1.0 \); from these a total of 187 (19.2\%) were repeatedly S/CO \(< 1.0\) and defined as ARCHITECT non-reactive.

 Median S/CO [interquartile range (IQR); total range] values:
 - Negative results (N=42,543): 0.13 [0.11-0.16 ; 0.07-0.99]
 - First run (N=187): 1.9 [1.4-3.5 ; 1.0-31]
 - Second run (N=187): 0.15 [0.12-0.19 ; 0.07-0.53]
 - Third run (N=187): 0.15 [0.12-0.18 ; 0.07-0.51]

 Bland-Altman analysis (bias±2SD) between first-second: 3.8±8
 Bland-Altman analysis (bias±2SD) between second-third: 0±0.1
 Mann-Whitney-Wilcoxon between second-third, p=0.44
Results

- Of the 788 repeatedly-reactive specimens, 784 specimens were dually reactive and four specimens (0.5%) were discordant among replicates.

 Median S/CO [IQR ; total range] values:
 - First run (N=788): 651 [285-880 ; 1.0-1441]
 - Second run (N=788): 653 [265-889 ; 0.9-1447]
 - Third run (N=788): 656 [264-885 ; 0.9-1454]

 Bland-Altman analysis (bias±2SD) between first-second: -4.0±31
 Bland-Altman analysis (bias±2SD) between second-third: 0.5±30
 Kruskal Wallis, p=0.97
ARCHITECT S/CO Distribution Between Replicates

Initially Reactive 19.2%

<table>
<thead>
<tr>
<th>Sample Repetition</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>Median</th>
<th>IQR</th>
<th>Architect Status N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>651</td>
<td>653</td>
<td>656</td>
<td>1.9</td>
<td>1.4</td>
<td>187</td>
</tr>
<tr>
<td>2nd</td>
<td>265</td>
<td>266</td>
<td>264</td>
<td>0.15</td>
<td>0.12</td>
<td>Non-Reactive</td>
</tr>
<tr>
<td>3rd</td>
<td>885</td>
<td>889</td>
<td>885</td>
<td>0.15</td>
<td>0.12</td>
<td>Reactive</td>
</tr>
</tbody>
</table>

2016 HIV Diagnostic Conference
Receiver Operator Curve for ARCHITECT S/CO Initially Reactive Specimens

S/CO of 10
Sensitivity: 89.5%
Specificity: 98.7%
Correctly Classified 94.3%

S/CO of 1.0
Sensitivity: 100%
Specificity: 78.5%
Correctly Classified 88.8%

S/CO of 32
Sensitivity: 84.8%
Specificity: 100%
Correctly Classified 92.7%

Area under the curve: 0.99
CI 95% (0.987 - 0.993)
ARCHITECT S/CO Initially Reactive at S/CO ≥10

<table>
<thead>
<tr>
<th>Architect Status</th>
<th>Non-Reactive</th>
<th>Non-Reactive</th>
<th>Reactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>176</td>
<td>11</td>
<td>788</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Repetition</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>1.8</td>
<td>0.15</td>
<td>0.15</td>
<td>16</td>
<td>0.15</td>
<td>0.15</td>
<td>651</td>
<td>653</td>
<td>656</td>
</tr>
<tr>
<td>IQR</td>
<td>1.4</td>
<td>0.12</td>
<td>0.12</td>
<td>11</td>
<td>0.11</td>
<td>0.12</td>
<td>285</td>
<td>265</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>0.19</td>
<td>0.18</td>
<td>20</td>
<td>0.20</td>
<td>0.18</td>
<td>880</td>
<td>889</td>
<td>885</td>
</tr>
</tbody>
</table>
ARCHITECT S/CO Replicates Reactive with Negative Viral Load (False Positive)

Φ: Negative Viral load
ΦΦ: Positive Viral load or Reactive Multispot

<table>
<thead>
<tr>
<th>Architect S/CO in Log10 Scale</th>
<th>False Positive 13.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/CO≥10 3 (3.3%)</td>
<td></td>
</tr>
<tr>
<td>S/CO<10 32 (4.6%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Median</th>
<th>S/CO<10</th>
<th>S/CO<10</th>
<th>S/CO<10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>686</td>
</tr>
<tr>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>382</td>
</tr>
<tr>
<td>2.8</td>
<td>2.9</td>
<td>2.9</td>
<td>898</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IQR</th>
<th>S/CO<10</th>
<th>S/CO<10</th>
<th>S/CO<10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.11</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>0.15</td>
<td>0.12</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>0.15</td>
<td>0.12</td>
<td>0.12</td>
<td>0.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Repetition</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Reactive N</td>
<td>176</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>696</td>
</tr>
</tbody>
</table>

2016 HIV Diagnostic Conference
Receiver Operator Curve for ARCHITECT S/CO Replicates Reactive and HIV Confirmed

S/CO of 1.0
Sensitivity: 100%
Specificity: 71.1%
Correctly Classified: 83.7%

S/CO of 32
Sensitivity: 91%
Specificity: 100%
Correctly Classified: 96.1%

S/CO of 10
Sensitivity: 95.7%
Specificity: 98.5%
Correctly Classified: 97.3%

Area under the curve: 0.99
CI 95% (0.993 - 0.997)
Results

- Turnaround time of the ARCHITECT from 942 repeatedly-reactive specimens was:
 - Median time [IQR ; total range] values:
 - First/Second run (N=942): **74 min [57-98 ; 34-198]**
 - Second/Third run (N=942): **1 min [1-1 ; 1-33]**
Conclusions

- For samples with an initial ARCHITECT S/CO ≥10, the false-reactive duplicate rate was 1.3% with a sensitivity of 85.5% while the false HIV infection rate was 1.5% with a sensitivity of 95.7%.

- Most of the samples initially ARCHITECT reactive as well as ARCHITECT false positive (negative viral load) were S/CO <10.

- To decrease turnaround time and total screening costs for research testing, all initially reactive research specimens with a S/CO ≥10 could reflex directly to Multispot discriminatory testing and HIV-1 RNA as indicated, while initially reactive specimens with a S/CO between 1 and 10 could be rerun only in singleton after centrifugation.
Acknowledgements

- Robert Coombs, MD, PHD, FRCPC
- Joan Dragavon MLS, Socorro Harb & the UW Retrovirology laboratory staff
- Paul Swenson PhD (DHSKC) and Joanne Stekler MD, MPH from Seattle King County Department of Public Health

Funding support:
- ACTG Virology Specialty Laboratory (UM1-AI-068636; UM1-AI-106701)
- HVTN HIV Diagnostic Laboratory (UM-AI-068618)
- UW CFAR Clinical Research and Retrovirology Core (P30-AI-027757)