Evaluation of the Performance of the Bio-Rad GS HIV Combo Ag/Ab EIA and Bio-Rad Geenius™ HIV-1/2 Supplemental Assay Using Dried Blood Spots as an Alternative Specimen Type

Silvina Masciotra
Special Studies and Training Activity Lead
HIV Diagnostics and Incidence Team

2016 HIV Diagnostics conference
Atlanta, March 23, 2016
Background

- FDA-approved Ag/Ab Combo and HIV-1/2 differentiation assays used in the CDC/APHL diagnostic algorithm are not approved for use with dried blood spots (DBS)
- Bio-Rad developed two protocols for DBS with the GS HIV Combo Ag/Ab EIA (BRC) and the Geenius™ HIV-1/2 Supplemental assay (Geenius)

In HIV-1 seroconverters
- BRC DBS assay detected 62.5% compared to 70.8% using the plasma assay and earlier than when using a IgG/IgM EIA
- Geenius DBS assay gave similar results to plasma assay and detected more infections than Bio-Rad Multispot and Western blot

<table>
<thead>
<tr>
<th></th>
<th>Bio-Rad Combo</th>
<th>Bio-Rad Geenius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity HIV-1 n=65</td>
<td>65/65 (100%)</td>
<td>45/45 (100%)</td>
</tr>
<tr>
<td>Sensitivity HIV-2 n=6</td>
<td>6/6 (100%)</td>
<td>6/6 (100%)</td>
</tr>
<tr>
<td>Specificity negative n=95</td>
<td>95/95 (100%)</td>
<td>not tested</td>
</tr>
<tr>
<td>Analytical sensitivity</td>
<td>200-300 p24 pg/ml</td>
<td>not applied</td>
</tr>
</tbody>
</table>
OBJECTIVE

- To further evaluate DBS specimen suitability for use with the developed assays
DBS protocols

A- One 6 mm punch was eluted using 150 µl of additional Working Strength GSHIV-1 Western blot Specimen diluent/Wash buffer (Bio-Rad)

B- O/N incubation at 2-8º C, brought to RT, mixed and used

Bio-Rad GSHIV Combo Ag/Ab EIA with DBS

Step 1:
- Add 25µl Conjugate 1 + 75µl control or eluate to each well
- Cover and incubate 60 ± 5 min. at RT on a shaking platform (625 rpm)

Wash a minimum of 5 times with 30-60 second soaks

Step 2:
- Add 100 µl Working Conjugate 2 to each well
- Cover and incubate 30 ± 5 min. at RT

Wash a minimum of 5 times with 30-60 second soaks

Step 3:
- Add 80 µl Working TMB to each well
- Cover and incubate 30 ± 5 min. at RT
- Add 100 µl Stopping Solution to each well

Read within 30 min. at 450 nm, with the 615-630 nm filter as a reference

Cutoff = Mean of Cutoff Calibrators + 0.150
Sample sets and analysis

- 60 DBS prepared from simulated whole blood from 11 commercial HIV-1 seroconversion panels
 - DBS results were compared to results from matched plasma tested with Bio-Rad GS HIV-1/HIV-2 PLUS O EIA (BR+O) and Geenius

- 105 DBS from persons with established HIV-1 infections stored for 7-8 years at -20°C
 - Reactivity after long-term storage was analyzed

- 348 DBS from persons who inject drugs who were screened with rapid test during HIV surveillance in the US (20 cities)
 - DBS were made from whole blood from an EDTA tube or fingerstick
 - DBS results were compared to HIV diagnosis reported at each site during surveillance
RESULTS
Diagnostic algorithm among HIV-1 seroconverters

- 60 plasma and DBS from commercial seroconversion panels
 - 13 BRC-plasma and BRC-DBS concordant non-reactive
 - 7 HIV-1 RNA negative
 - 6 HIV-1 RNA positive VL = [21 - 1.9 \times 10^4 \text{ copies/ml}]
 - 8 BRC-plasma reactive/BRC-DBS non-reactive discordant
 - HIV-1 RNA positive VL = [3.3 \times 10^3 - 1.8 \times 10^5 \text{ copies/ml}]
 - All Geenius-negative and Aptima-positive in plasma
 - 39 BRC-plasma and BRC-DBS concordant reactive
 - HIV-1 RNA positive VL = [\text{TND-} > 10^7 \text{ copies/ml}]
DBS protocols in 47 BRC-plasma reactive

- BRC-plasma: 47
- BRC-DBS: 39
- BR+O-plasma: 32
- BRC-Geenius plasma: 22
- BRC-Geenius DBS: 15

Significance levels:
- BRC-plasma vs. BRC-DBS: p=0.0133*
- BRC-DBS vs. BR+O-plasma: p=0.0133*
- BRC-plasma vs. BRC-Geenius plasma: p=0.0455*
Geenius reactivity in plasma and DBS

<table>
<thead>
<tr>
<th>Geenius-plasma</th>
<th>Geenius-DBS</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative</td>
<td>negative</td>
<td>12</td>
</tr>
<tr>
<td>negative</td>
<td>HIV-1 indeterminate</td>
<td>1</td>
</tr>
<tr>
<td>HIV-1 indeterminate</td>
<td>negative</td>
<td>3</td>
</tr>
<tr>
<td>HIV-1 indeterminate</td>
<td>HIV-1 positive</td>
<td>1</td>
</tr>
<tr>
<td>HIV-1 positive</td>
<td>negative</td>
<td>4</td>
</tr>
<tr>
<td>HIV-1 positive</td>
<td>HIV-1 indeterminate</td>
<td>4</td>
</tr>
<tr>
<td>HIV-1 positive</td>
<td>HIV-1 positive</td>
<td>14</td>
</tr>
</tbody>
</table>
Reactivity in DBS stored frozen for 7-8 years

- Individuals were OQ-FS whole blood preliminary positive

- Plasma tested with IgG/IgM EIAs, Ag/Ab Combo IA, Supplemental test, NAT and HIV-1 Western blot
 - 105 established HIV-1 infections

- DBS collected 2007-2008 and stored at -20° C until testing
 - All BRC-Reactive
 - All Geenius HIV-1 positive:
 - 41 gp160 gp41
 - 19 gp160 p24 gp41
 - 17 p31 gp160 gp41
 - 27 p31 gp160 p24 gp41
 - 1 gp36 gp160 p24 gp41
DBS and surveillance in 20 cities in the USA

- **Individuals:**
 - Unaware of HIV status get tested with rapid test (FS-whole blood or OF) or IA (EDTA whole blood), confirmation is performed when preliminary positive
 - Self-reported HIV positive may or may not get tested, but confirmation is performed in plasma, DBS or OF (3rd or 4th gen IA, WB, NAT)
 - If consent is given, DBS are collected, dried, stored in bags with desiccants and humidity indicator card, and shipped to CDC at ambient temperature within 10 days of collection

- **HIV diagnosis is performed at each site**
 - Different tests and specimen types are used

- **DBS are stored at -20° C at CDC until testing**
Performance of the HIV diagnostic algorithm with DBS collected during HIV surveillance

<table>
<thead>
<tr>
<th>Reported HIV status/rapid test result/final result</th>
<th>n</th>
<th>BRC</th>
<th>Geenius</th>
<th>Viral load m2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>unaware/negative/HIV-negative</td>
<td>245</td>
<td>242</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>unaware/preliminary positive/HIV-negative</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>unaware/preliminary positive/HIV-1 positive</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>self-reported positive/not done/HIV-1 positive</td>
<td>67</td>
<td>67</td>
<td>66</td>
<td>1</td>
</tr>
</tbody>
</table>

n: number of specimens; NR: non-reactive; R: reactive; TND= Target not detect

a: Western blot-DBS negative, Bio-Rad avidity-DBS 'invalid'

- Initial testing with BRC and Geenius using one 6 mm punch identified:
 - 99.0% of the HIV-1 infections diagnosed at each site (different algorithms)
 - Four BRC-reactive samples (OC/CO:=[1.1-3.8]) were Geenius HIV-negative or had no result among HIV-negative samples, thus NAT will be needed

- Repeat of BRC using a second eluate in duplicate:
 - Three samples were non-reactive
 - One remained reactive OD/CO\(_{\text{initial}}\) =1.1, OD/CO\(_{\text{duplicate}}\) =1.2 (VL TND)
 - Geenius was not repeated
Summary BRC-DBS

- 100% HIV-1 sensitivity (n=127)
- 100% HIV-2 sensitivity (n=6)
- 98.4% specificity (n=245)
 - Initially reactive repeated in duplicate improved specificity to 99.6%
- Analytical sensitivity = 200-300 p24pg/ml
- Detection was not affected by antiretroviral therapy
- BRC detected few more early HIV-1 infections than an IgG/IgM IA with plasma
- BRC worked with specimens stored for years at -20°C
Summary Geenius-DBS

- 95.3% HIV-1 sensitivity (n=106)
- 100% HIV-2 sensitivity (n=6)
- Detection was not affected by antiretroviral therapy
- Geenius worked with specimens stored for years at -20° C
- DBS algorithm detected fewer Geenius HIV-1 positive than plasma algorithm in early HIV-1 infections
- Among BRC-reactive samples, 67% showed concordant results between plasma and DBS
Conclusions

- The DBS algorithm was less sensitive than plasma in early HIV-1 infections, but the BRC-DBS was more sensitive than an IgG/IgM IA with plasma.

- An eluate from one 6 mm punch can be used for both assays.
 - Repeat testing may be needed to increase BRC-DBS specificity.
 - NAT with DBS will be needed to confirm infection.

- The results are promising when applied in a high-risk population.

- Implementation of a DBS diagnostic algorithm would benefit HIV surveillance and individuals reluctant to have blood draws.
Acknowledgements

- Wei Luo
- Sarah Adams
- Tara Smith
- Kathy Shriver
- Laura Wesolowski
- Steve Ethridge
- Amanda Smith
- Gabriela Paz-Bailey
- S. Michele Owen
Thank you!

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.