A generalizable method with improved accuracy for estimation of HIV infection duration using clinical HIV testing histories

Christopher D. Pilcher, Travis Porco, Reshma Kassanjee, Shelley N. Facente, Eduard Grebe, Silvina Masciotra, Philip Norris, Patricia Garrett, Michael P. Busch, Sherry M. Owen, Alex Welte
Estimating Infection Time

• Precision (clinical diagnosis, research and epidemiological purposes)
• Classification accuracy (e.g., surveillance staging, prioritization of interventions)
• “Time since first detectable infection”
 – Hypothetical date of single copy viremia during the “ramp-up” phase
Fiebig staging (acute HIV-discrepant tests)

- “Fiebig staging” requires testing by multiple obsolete assays
- All results/testing on same (diagnostic) specimen, same day
 Creativity required to estimate infection time from an actual test history (e.g.: “RNA+/rapid test-” = “F1-4”)

McMichael et al Nature Reviews Immunology 10, 11-23 (2010)
adapted to use viral ramp-up dynamics

- However, **viral load data is typically available** as part of the testing history in all cases of antibody-negative acute HIV infection
- Hypothesis: VL alone can be used to estimate first detectable infection

McMichael et al Nature Reviews Immunology 10, 11-23 (2010)
Objectives

1. Validate and quantify precision of Fiebig stage based estimation of infection time
2. Develop and assess a simplified method using HIV viral load to estimate infection time in Ab negative acute HIV
Data: plasma donor panels with precisely observed date of first detectable infection

- Data only considered from panels in which there were consecutive measurements <7 days apart going from below 100 copies to above 100 copies HIV RNA
- DDI at 100 RNA copies (DDI$_{100}$) imputed within 1-6 day window
- 53 plasma donor panels, 468 specimens with mean RNA interval 3.5 days
- 174 WB negative specimens (147 F1-2, 27 F3)
- 60 specimens from 17 panels in original Fiebig publication
Validation of Fiebig-based Estimation
N=119 specimens (non-UCSF/BSRI specimens only)

- Modest but statistically significant correlation of estimated vs. observed DDI
- $R^2=0.34$
- Precision of Fiebig-derived EDDI roughly +/- 10 days

Observed time from first detected infection to sample
VL ramp-up model development
UCSF-BSRI specimens only

Slope=0.33 log/day
Improved Estimation using VL Ramp-up Model
N=119 specimens (non-UCSF/BSRI specimens only)

Observed time from first detected infection to sample
Acute HIV Staging: Conclusions

- Fiebig staging for stage 1-3 specimens (gold standard) estimates within about 10 days of the true DDI in majority of cases

- For patients with acute HIV and a same-day, quantitative viral load, estimation by viral load greatly improves this precision over the Fiebig-derived method (closer to 5 days)
Objectives

1. Validate and quantify precision of Fiebig stage based estimation of infection time
2. Develop and assess a simplified method using HIV viral load to estimate infection time in Ab negative acute HIV
3. Develop and assess a generalizable method for estimating infection time from clinical testing histories
A Generalizable Method

- Based on testing history that is available
- Accommodate tests performed on different days
- Accommodate data from past, present and future assays
- Accommodate incomplete data ("viral load positive", "rapid test negative")
- For a given patient, give both a best estimate of infection timing and information on plausible bounds on that estimate
Sequence of HIV Assay Reactivity During Early HIV Infection relative to Western Blot*

*Assay sensitivity above is based on frozen plasma from 17 seroconverters. Whole-blood and oral fluid have not been characterized for early infection.

Deriving an estimated date of detectable infection (EDDI) from real-world testing history: “WB midpoint method”

HIV – test date

Assumed WB conversion

HIV+ test date
Deriving an estimated date of detectable infection (EDDI) from real-world testing history: “WB midpoint method”

HIV – test date

Assumed WB conversion

HIV+ test date

EDDI = midpoint -30 days?
adapted to incorporate knowledge about specific tests’ conversion dynamics

HIV – test: Aptima

earliest plausible DI

latest plausible DI

HIV+ test date: MS+
→ incorporating knowledge about specific tests’ conversion dynamics

HIV – test: Aptima

HIV+ test date: MS+

plausible interval

EP-DI

LP-DI
incorporating knowledge about specific tests’ conversion dynamics

HIV – test: Aptima

HIV+ test date: MS+

EDDI

EP-DI

LP-DI
Diagnostic Test History – Example 1

<table>
<thead>
<tr>
<th>Test Date</th>
<th>Adjusted Date</th>
<th>Test Name</th>
<th>Test Estimate</th>
<th>Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 23, 2015</td>
<td>March 31, 2015</td>
<td>Determine RT</td>
<td>Masciotra calc adjusted</td>
<td>Negative</td>
</tr>
<tr>
<td>April 23, 2015</td>
<td>April 18, 2015</td>
<td>Liat Quant</td>
<td>DT formula</td>
<td>Negative</td>
</tr>
<tr>
<td>June 9, 2015</td>
<td>May 17, 2015</td>
<td>Determine RT</td>
<td>Masciotra calc adjusted</td>
<td>Positive</td>
</tr>
<tr>
<td>June 9, 2015</td>
<td>May 12, 2015</td>
<td>WB Full</td>
<td>CDC calc adjusted</td>
<td>Positive</td>
</tr>
</tbody>
</table>
Visual Representation of Test History Indicating DDI Interval – Example 1

EP-DDI = April 18, 2015
DDI interval = 24 days
LP-DDI = May 12, 2015
EDDI = April 30, 2015
Visual Representation of Test History Indicating DDI Interval – Example 1

EP-DDI = April 18, 2015
DDI interval = 24 days
LP-DDI = May 12, 2015
EDDI = April 30, 2015
Visual Representation of Test History Indicating DDI Interval – Example 1

EP-DDI = April 18, 2015
DDI interval = 24 days
LP-DDI = May 12, 2015
EDDI = April 30, 2015
Visual Representation of Test History Indicating DDI Interval – Example 1

EP-DDI = April 18, 2015
DDI interval = 24 days
LP-DDI = May 12, 2015
EDDI = April 30, 2015
Visual Representation of Test History Indicating DDI Interval – Example 1

Ep-DDI = April 18, 2015
DDI interval = 24 days
LP-DDI = May 12, 2015
EDDI = April 30, 2015
Diagnostic Test History – Example 2

<table>
<thead>
<tr>
<th>Test Date</th>
<th>Adjusted Date</th>
<th>Test Name</th>
<th>Test Estimate</th>
<th>Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec. 10, 2012</td>
<td>Nov. 30, 2012</td>
<td>ARCHITECT</td>
<td>CDC calc adjusted</td>
<td>Negative</td>
</tr>
<tr>
<td>Dec. 12, 2012</td>
<td>Dec. 5, 2012</td>
<td>AptimaPool10</td>
<td>DT formula</td>
<td>Negative</td>
</tr>
<tr>
<td>Jan. 15, 2013</td>
<td>Jan. 5, 2013</td>
<td>ARCHITECT</td>
<td>CDC calc adjusted</td>
<td>Positive</td>
</tr>
<tr>
<td>Jan. 24, 2013</td>
<td>Jan. 16, 2013</td>
<td>bDNA</td>
<td>DT formula</td>
<td>Positive</td>
</tr>
<tr>
<td>March 26, 2013</td>
<td>March 18, 2013</td>
<td>bDNA</td>
<td>DT formula</td>
<td>Positive</td>
</tr>
<tr>
<td>April 23, 2013</td>
<td>April 15, 2013</td>
<td>bDNA</td>
<td>DT formula</td>
<td>Positive</td>
</tr>
</tbody>
</table>
Visual Representation of Test History Indicating DDI Interval – Example 2

EP-DDI = December 5, 2012
DDI interval = 22 days
LP-DDI = December 27, 2012
EDDI = December 16, 2012
EP-DDI = December 5, 2012
DDI interval = 22 days
LP-DDI = December 27, 2012
EDDI = December 16, 2012
Visual Representation of Test History Indicating DDI Interval – Example 2

EP-DDI = December 5, 2012
DDI interval = 22 days
LP-DDI = December 27, 2012
EDDI = December 16, 2012
Visual Representation of Test History Indicating DDI Interval – Example 2

EP-DDI = December 5, 2012
DDI interval = 22 days
LP-DDI = December 27, 2012
EDDI = December 16, 2012
Validation of Testing History Method (1)
n=20 panels, 81 specimens: non-CDC panels only

<table>
<thead>
<tr>
<th>Method</th>
<th>Estimated DDI</th>
<th>(ICC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiebig stage-based</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>Offset-based</td>
<td></td>
<td>0.95</td>
</tr>
</tbody>
</table>

(ICC) = 0.95 (0.93, 0.97)

Time since observed DDI (days)
Validation of Testing History Method (2) 3-point series

Test 1
RNA+3G-

Test 2
3G+WB-

Test 3
3G+WBind

Observed DDI

Fiebig EDDI

Testing History Method EDDI
Validation of Testing History Method

n=35 panels, 118 specimens: 3-point series only

Same day results (Fiebig)

- ICC=0.33 (0.18, 0.76)

Separated bleeds (offset based)

- ICC=0.47 (0.36, 0.69)
Conclusions

• The performance of a new, generalizable method for estimating infection time from routine clinical history compares favorably with less flexible methods that have been previously used.

• For patients with discrepant results in acute HIV and a quantitative viral load, the viral ramp-up method substantially improves precision of infection timing estimates compared to Fiebig staging.

• For patients with discrepant acute results but no quantitative VL, the testing history method gives infection timing estimates similar to previously used methods regardless of the tests used.

• Precision of estimates derived from the testing history method is robust to separation of testing dates.
Immediate next steps

• Public data conversion tool (housed by CEPHIA)
• Creation of clinician tool
• Update offsets as available
• Assess use of supplemental assays for improving estimates and diagnosing early infection