Powder Bed Additive Manufacturing of Titanium: Aerospace Opportunities and the US Supply Base

26 Sept 2016

Adam Pilchak, Jon Miller, and Eddie Schwalbach

AFRL/RXCM
Acknowledgements

AFRL RXCM:
 Mike Groeber, Kevin Chaput, Todd Butler, Sean Donegan

AFRL ManTech:
 Mary Kinsella, Mark Benedict

Builds:
 ORNL, GE and Sigma Labs
Aerospace Applications of AM

• Aerospace Community
 – Practically all sectors are actively evaluating AM:
 structure, propulsion, space, munitions, electronics, human system
 – Depending on application, a variety of implementation paths are possible:
 tooling, prototypes, design iteration, production parts
 – Some aspect of Material, Process and Component Qualification is required
 for nearly every implementation path

• AM Aerospace Opportunities
 – Functionally-embedded structures
 – Expanded geometric complexity
 – Required component re-design
 – Low production quantities
 – Mass customization
 – Non-critical parts

Source: Wohlers Associates
Benefits and Challenges

AF Benefits:
- Reduced lead time and cost for small production runs → Aircraft Availability & Sustainment Affordability
- Mass customization and enabling geometric complexity → Adaptive Warfighter & Energy Efficiency
- Weight reduction via part consolidation/material substitution → Reduced Sustainment Burden & Energy Efficiency

Technical Challenges:
- Unquantified material quality with undefined inspection protocols to meet aerospace structural requirements
- Highly variable material properties and lack of statistical databases for design
- Lack of standardized process controls typically required for structural applications
- Inadequate cost models for representation of post-processing requirements — Inspection, Machining, and Heat Treatment
Enhanced Component Performance
Multiple component families’ geometries are constrained by conventional manufacturing capabilities, including non-structural parts, complex propulsion parts, heat exchangers, space parts.

Opportunities:
- High-Value, Low-Production Geometries
- Expanded Component Geometries
- Weight Reduction via Consolidation
- Reduced Dev. Cycle / Rapid Design Iteration

Potential for
- System Design Cycle Reduction
- Lead-Time Improvements
- Component Performance Benefits

Functionally-Embedded Structures
Opportunities:
- Reliable, integrated electronics printed directly on structure
- Conformal antennas adapted into load-bearing structure
- Distributed electronics for flight-control feedback and structural health monitoring

Potential for
- Simplified Mfg., New Sensing, Improved System Performance

Replacement Parts for Sustainment
Re-manufacture of components with obsolete manufacturing routes or low production volumes are expensive and have long lead times due to tooling requirements of conventional mfg. processes.

Opportunities:
- Tools, Fixtures & Prototypes
- Temp. Replacement Parts
- Unintended Spares & Obsolescence Replacement

Potential for
- Improved Lead Times
- Reduced Cost (LRP)

System Affordability
Opportunities:
- Low Production Volume Components
- Parts Customization and Consolidation
- Lean Parts Management
- Parts on Demand

Potential for
- Total Life Cycle Cost Reduction
- Lead-Time Improvements
- Simplified Manufacturing Routes

Component Repair
Current Issues:
- Current parts NOT designed FOR repair
- Unvalidated processes and inspections

Potential for
- Organic or Local Mfg Repair
- Reduced Sustainment Burden

AFRL
Qualification of AM for Critical Structures

AFRL is the material and process qualification protocol thought leader for critical AF aerospace applications

- AFRL contributes to development of:
 specs, standards, and qualification methods
- Entire community defining certification process
- Significant material integrity risks
- Need new quality assurance methods

Conventional NDE & CT Evaluation

Process Complexity, Monitoring & Control

Highly Variable Material Properties
Process Complexity
Length & Time Scales

Temporal

Solid

Powder

IR Intensity

Time [s]

Contours

Melting

Post-heats

Pre-heat

Spread powder

Complex thermal history
Solidification event ≈1 μs
Full build ≈1 day

Spatial

Build (40 parts)
Part (300 layers)
Layer (150 tracks)
Track

Wide range of spatial scales, complex build can easily have 10km of track

0.2m
15mm
15mm
≈150μm

0.2m
15mm
15mm
≈150μm

50μm
Process Complexity
Geometry Variations & Process Changes

Arcam A2 e-beam powder bed fusion: Ti-6Al-4V

- Notional parameters uniform throughout bed
- Local processing parameters changed by system in response to geometry
- 3D maps of processing parameters generated via ORNL code

Conditions/Parameters (Normalized to Region A)

<table>
<thead>
<tr>
<th></th>
<th>Region A</th>
<th>Region B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length [mm]</td>
<td>20</td>
<td>107.6</td>
</tr>
<tr>
<td>Power/P_A</td>
<td>1</td>
<td>4.67</td>
</tr>
<tr>
<td>Spot Velocity/V_A</td>
<td>1</td>
<td>8.10</td>
</tr>
<tr>
<td>Line Velocity/V_A</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Scan time/t_A</td>
<td>1</td>
<td>0.636</td>
</tr>
<tr>
<td>Energy density/E_A</td>
<td>1</td>
<td>0.556</td>
</tr>
</tbody>
</table>

Property variations observed with...
- Different orientations (build direction debits)
- Thicknesses within a “Region” (1-5 mm)
- “Region A” to “Region B” (machine algorithm)
- Powder Lot Variations & Recycle Strategies
- Machine S/Ns, Machine Models, Vendors
 …not to even count process knob changes…
E-Beam Process-Structure-Properties

Processing
Implicit changes in conditions via geometry affect melt pool geometry

Structure
Change in Texture across regions

Properties
Texture variation results in tensile property variations across regions
Direct Metal Laser Sintering (DMLS)
EOS M280 Machine
Striping & Hatching Enabled
Stripes Rotate 67° Per Layer

Path plan for a single layer colored by elapsed time

Zoom of 10mm diameter cylinder

Stripes Typically 1s-10s of mm
Stripes Processed in Serpentine Manner
Laser Moves ~1 m/s
Laser Crosses Stripe in ~1/200 s
Fundamental Research: Pedigreed Data Processing – Structure – Properties

Data collected at GE (AFRL contract) EOS M280 Ti-6Al-4V

Control Spatial Processing Variation → Control Structure

Post-Build Defect Characterization

CAD Geometry

Laser Position(t)

Laser Properties

Voids & Stripe Boundaries

Temp v. Time Profiles

Processing Frequency

Defect Frequency

Processing -Structure Maps

DARPA

AFRL
Designing for AM: AFRL Vision
Adaptive 3D Digital Architecture

- Process Planning
- Process Modeling
- Process Monitoring
- Topology Optimization
- NDE Modeling
- Geometry & Design Rules
- Outcome Modeling & Characterization
- Nondestructive Inspection
• Great Opportunities exist for Additive Manufacturing of Ti alloys
 – Need to find the right ones that balance risk and value proposition
• There has been significant progress in understanding process control & integrity
 – Significant geometry influences in addition to classic process-structure-property relationships
• Need Data Tools to manage the extensive spatially resolved data
 – Need to deal with significantly different spatial and temporal scales