From powder to demanding components – titanium and powder metallurgy

Thomas Ebel
What is powder metallurgy (P/M)?

- Powder
- Shaping
- Consolidation
- Usable product
Why applying powder metallurgy?

- Saving of raw material
- **Homogenous properties** → independent of geometry
- **(Near)-Net-Shape production possible** → no or little post-treatment
- **Variety of materials** → hardly conventionally processable materials
- **Porous structures / foams** → technical and medical purpose
- **Stockkeeping** → one raw material for all geometries
- **Cost reduction** → interesting possibilities for titanium
Possible cost reduction of Ti-products

ore (ilmenite, rutile)
titanium oxide

Kroll-process

Ti-sponge

crushing
pressing
plasma welding

vacuum arc remelting

ingot

forging
rolling
extrusion

casting

P/M techniques
(near-net-shape)

Powder

final product

machining

mill products
rods
bars
sheets
Titanium powders

Spherical (GA, PA, PREP)
- Good flowability
- High purity
- Relatively expensive

Irregular shape (HDH)
- Bad flowability
- Low to medium purity
- Relatively cheap

„Low-cost powders“
- Irregular shape
- Often porous
- Medium purity

Additional processes
- Spheroidization
Techniques

Semi-finished or pre-formed material

HIP: Hot Isostatic Pressing SPS: Spark Plasma Sintering Hot extrusion

www.azom.com www.tu-freiberg.de

plus conventional machining

etp.uni-hannover.de
Techniques

(Near)-Net-Shape

Powder pressing

www.erowa.com

plus sintering
Techniques

(Near)-Net-Shape with high degree of geometrical freedom

Additive Manufacturing (AM)

Metal Injection Moulding (MIM)

Shaping and consolidation by local melting

Injection moulding plus sintering

www.eos.info
Additive Manufacturing

Powder bed based techniques

SLM: Selective Laser Melting
EBM: Electron Beam Melting

LENS: Laser Engineered Net Shaping
LMD: Laser Metal Deposition
LC: Laser Cladding

[Diagrams of the manufacturing process]

www.ifw-dresden.de
Metal Injection Moulding MIM

Metal powder

Injection moulding (shaping)

De-binding

Sintering (consolidation)

Polymeric binder
Comparison AM and MIM

AM

- Rapid melting and cooling, fine microstructure
- Anisotropic properties and internal stress, if no additional heat treatment applied
- Spherical powders necessary
- Surface needs post-treatment
- Single part to medium large numbers

MIM

- Sintering, coarse microstructure
- Isotropic properties
- Preferentially spherical powders, but irregular shaped usable
- Smooth surface after sintering
- The larger the number of identical parts the better
P/M titanium - challenges

- Ductile
- Brittle

0.5 wt% 14 wt%
P/M titanium - challenges

Reaction of titanium with oxygen, nitrogen and carbon
- Very strong affinity to these elements
- Very high effect on mechanical properties (strength, ductility)

Rather expensive equipment necessary
- Dedicated facilities highly recommended
- Processing under vacuum and inert gas

Ti-powders are relatively coarse
- Surface roughness after sintering higher than P/M steel
- Limited sintering activity – residual porosity

Relatively expensive powder production
- Methods like water atomization not possible
P/M titanium - challenges

More challenges

- grain growth during sintering
- microstructural changes
- residual porosity

wrought Ti-6Al-4V

sintered Ti-6Al-4V
Example MIM of Ti-6Al-4V

Powder
Ti-6Al-4V ELI (grade 23), O-content typ 0.10 to 0.12 wt%

Yield strength
+ HIP

Plastic elongation

Typical properties
O = 0.22 wt%
N = 0.018 wt%
C = 0.045 wt%
Residual porosity 3.5%

Tensile properties matching standards of wrought material achievable

as-sintered, 1350 °C
sintered + hot-isostatic pressed (HIP), 100 MPa / 915 °C / 2h
Example MIM of titanium-aluminides

Current status: MIM processing of TNB-V5 \(\text{(Ti-45Al-5Nb-0.2B-0.2C (at\%)})\)
MIM Ti-6Al-4V – fatigue behaviour

Alloy modification: addition of elemental boron powder

- Forming of titanium boride particles (TiB)
- Hindrance of grain growth (β-phase)
- TiB working as nucleus for α-phase forming during cooling

<table>
<thead>
<tr>
<th>Ti-6Al-4V</th>
<th>Ti-6Al-4V-0.5B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change of microstructure

- Nearly no lamellae
- Grain size 18 µm

Endurance limit

- wrought Ti-6Al-4V
- + HIP
- + 0.5% B

- 400 MPa
- 450 MPa
- 640 MPa
Grain refinement

Adding Yttrium

Ti-6Al-4V

sintered at 1400 °C / 2h

colony size 164 µm
3% porosity

Ti-6Al-4V + 0.2Y

formation of Y₂O₃

colony size 103 µm
3% porosity

Additional effect: scavenging of oxygen

→ low cost powders?
Research & development

Modification of existing alloys

Development of P/M alloys
Summary P/M of titanium

- Several P/M techniques are available and commercially applied
- A variety of powders exists, different in shape, purity and price
- Metal Injection Moulding and Additive Manufacturing offer (near)-net-shape possibilities
- Properties matching standards of wrought material, if properly processed
- Optimization rather easily possible by alloy modification

P/M has a great potential for “low cost titanium”

Current / necessary / interesting research

- Development of robust alloys.
- Grain refinement for optimized mechanical properties (fatigue).
- Strengthening by addition of hard particles (MMCs).
- Scientific understanding of the role of interstitial and other alloying elements.