Titanium metal – what will the next decade bring?

TITANIUM USA 2018, Las Vegas, USA
10th October, 2018

Jessica Roberts
Manager – Battery & Technology Materials
Disclaimer

The statements in this presentation represent the considered views of Roskill Information Services Ltd. It includes certain statements that may be deemed "forward-looking statements". All statements in this presentation, other than statements of historical facts, that address future market developments, government actions and events, are forward-looking statements. Although Roskill Information Services Ltd. believes the outcomes expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results or developments may differ materially from those in forward-looking statements. Factors that could cause actual results to differ materially from those in forward-looking statements include changes in general economic, market or business conditions.

While Roskill Information Services Ltd. has made every reasonable effort to ensure the veracity of the information presented it cannot expressly guarantee the accuracy and reliability of the estimates, forecasts and conclusions contained herein. Accordingly, the statements in the presentation should be used for general guidance only.
Presentation outline

• Historical trends
 • Supply and trade
 • Demand for mill products

• Outlook
 • Titanium industry flowchart
 • Mill product forecasts by sector
 • Supply chain outlook & risks

• Conclusions
Historical titanium trends
Titanium sponge: Production now dominated by China, Japan & Russia

- China has been a significant sponge producer for the last decade, driven by industrial markets
- World titanium production estimated at ~190kt in 2018, following recoveries in output from China, Japan & Russia

Titanium sponge production, 1998-2017 (kt Ti)

Source: Roskill
Titanium sponge: Major trade routes are very consolidated

- Sponge trade highlights the small number of regional production hubs for sponge and melted products

Major sponge trade flows:

- Japan → N. America (premium grade)
- Russia → EU 28
- Kazakhstan → China
- Ukraine → China and N. America

Source: Roskill, GTT
Titanium scrap: Use in melted products remains dominated by the USA

- USA consumed around 75% of world scrap suitable for remelting in 2017, scrap now ~80% of US melted feedstock

Source: USGS, Roskill

USA: consumption of scrap by application, 2000-2017 (kt Ti)

Source: USGS, Roskill
Melted products: USA leads premium-grade market, China leads industrial-grade

- US capacity includes high amount of EBM and PAM, suitable for remelting. Chinese melting capacity mainly via VAR.
- Capacity includes some double- and triple-melting, so actual ‘available’ capacity is much lower.

Source: Roskill

Titanium melted product capacity by technology, 2018 (ktpy)
Melted products: High degree of integration between melting & mill product manufacture

- Trade shows the flow of feedstock to mill product manufacturers, based primarily in aerospace production hubs

Titanium melted products trade matrix, 2017 (13.5 kt)

Major ingot & slab trade flows:

- USA → France
- USA → UK
- Russia → USA

Source: Roskill, GTT
Mill products: Strong recovery in production & exports in 2017-18

- Capacity utilisation thought to be around 75-80% in 2018, driven by healthy industrial and aerospace demand

Titanium mill product output, 2017 (%)

Titanium mill product exports, 2009-2017 (t)

Source: Roskill

Source: GTT
Mill products: Chinese demand has pushed industrial Ti use higher

- Industrial Ti use slowed down during high sponge prices in 2008-2012, but Chinese consumption has led to recovery

Source: Roskill
Titanium outlook
Titanium flowchart: Supply chain is characterised by high levels of new scrap generation

Source: Roskill
Mill product outlook (1): High order backlogs for civilian aircraft

- Commercial airframers have order backlogs representing around 9 years’ production
- Jet engine deliveries forecast to grow >3%py between 2018-2028, engines in service to grow ~3.8%py (Airline Monitor)
- General aviation affected by 2008 global economic downturn, yet to recover to 2007 peak
- Civilian & parapublic helicopter deliveries affected by low oil & gas prices in 2015-2017, but expected to stabilise

- Airbus backlog through 31 August 2018:
 7,415
 • (2018 net orders: 219)

- Boeing backlog through 31 August 2018:
 5,894
 • (2018 net orders: 581)
Mill product outlook (2): Military demand continues to grow

- More than 5,000 fighter aircraft expected to be delivered between 2018-2028, led by the F-35
- Deliveries of new Russian (Su-50) and Chinese (JF-17, J-20, J-31) fighter jet models also forecast to grow
- Military helicopters now overtaken civilian rotorcraft, deliveries of 7-8,000 projected over next 10 years
Mill product outlook (3): Industrial, medical & consumer uses show promising signs

- Chemicals: higher growth from chlor-alkali markets, partly helped by EU regulations, but competition in food processing
- Power: high demand expected for nuclear steam turbine blades, China’s blue-sky policy to benefit FGD installation
- Medical & consumer: orthopaedics benefitting from longer life expectancies; Asian middle class to drive consumer use

Industrial uses of titanium, 2018 (~80 kt)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Outlook</th>
<th>Drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical</td>
<td>↑</td>
<td>Chlor-alkali markets, food processing</td>
</tr>
<tr>
<td>Power</td>
<td>↑↑↑</td>
<td>Nuclear, geothermal, FGD technology</td>
</tr>
<tr>
<td>Shipping</td>
<td>↑</td>
<td>Shipbuilding, marine uses</td>
</tr>
<tr>
<td>Desalination</td>
<td>↑</td>
<td>Move from thermal to membrane tech</td>
</tr>
<tr>
<td>Oil & gas</td>
<td>↓</td>
<td>Oversupply expected from mid-2020s</td>
</tr>
<tr>
<td>Metallurgy</td>
<td>→</td>
<td>Electrorefining expected to be stable</td>
</tr>
<tr>
<td>Automotive</td>
<td>↑↑</td>
<td>Fuel cell vehicle growth in Japan</td>
</tr>
<tr>
<td>Architecture</td>
<td>→</td>
<td>Stable growth in cladding & roofing</td>
</tr>
<tr>
<td>Others</td>
<td>→</td>
<td>Mixed outlook, ammonia heat exchangers offer best prospects</td>
</tr>
</tbody>
</table>

Source: Roskill
Mill product outlook (4): But AM expected to reduce Ti specific use

- Aerospace estimated to account for 30% of the metal additive manufacturing market, focused on complex parts
- Titanium AM parts in use by Airbus, Boeing, GE, Safran & Rolls-Royce. Norsk Titanium now Boeing qualified producer

Outlook for titanium use in aerospace, on “business as usual” and “AM-adjusted” basis
Ti supply outlook: market may need to adjust to AM impact

- New projects include AMIC/Toho sponge JV in Saudi Arabia (online 2018); Perryman US melt expansion (online 2019)
- Small-sized Chinese mothballed Ti sponge plants unlikely to resume production
- Most supply-side developments focused on Ti products for use with AM (Norsk Titanium, ATI, Perryman)
- Impact of AM on upstream supply chain differs depending on outcome:
 - "High AM impact" may see scrap availability for remelting fall as buy-to-fly ratios reduce; greater premium-grade sponge output would be required – **primarily affecting US melters**
 - "Business as usual" could see higher than expected demand for premium-grade melting capacity – **mainly affecting US and Russian melters**

Roskill
Ti supply chain risks: national policies could cause interruptions

- **USA/Russia sanctions**: trade on melted and mill products potentially at risk. VSMPO-Avisma and Boeing opened new titanium forging unit in the Urals in September 2018

- **“No deal” Brexit** may impact UK mill product manufacturers and aerospace supply chains

- **US-China trade tariffs** dispute not a high risk for titanium, but may extend to aircraft. Boeing forecasts China to buy US$1.2T worth of aircraft through to 2037

Courtesy: Wikipedia
Conclusions

• Titanium mill product demand forecast to grow ~2%py out to 2028, with industrial uses expected to perform strongly

• **Aerospace** demand for Ti expected to be impacted by growth of AM and larger share of models with lower Ti content

• Availability of scrap for remelting projected to decline; more premium-grade sponge may be required

• Premium-grade melted product capacity could require investments under “business as usual” aerospace Ti scenario

• National policies present some risks to the sector – Russian sanctions and “no deal” Brexit main risks to titanium supply chains, US-China tariffs a risk to end-use markets such as aerospace

• Some challenges for the sector, but next decade is projected to see reasonable growth
New Titanium Metal report published in August 2018:

1. Executive Summary
2. Titanium Flowchart
3. Titanium Supply Chain
4. International Trade
5. Prices
6. Outlook
7. Background
8. Country Profiles
9. End-uses
10. Company Profiles

Jessica Roberts
Manager – Battery & Technology Materials
jessica@roskill.com
+44 (0)208 417 0087

Roskill
JOIN US IN 2019