EXW Titanium Plate

Ultrasonic Inspection of Condenser tubesheets for Nuclear Power Plant
Explosion Welding Process EXW

1. PLAIN MATERIAL INSPECTION
 - Welder
 - Alloy Cladder

2. GRIND MATING SURFACES
 - Grinder

3. ASSEMBLE BACKER, CLADDER AND EXPLOSIVE
 - Explosive Powder
 - Space Between Plates

4. EXPLOSION
 - Detonation Front
 - Metallurgical Weld Line
 - Collision Line

5. FLATTEN AND CUT
 - Rollers

6. TESTING AND INSPECTION

SARRAT Olivier – BD Chemical and Petrochemical
KEY PROCESSENT ELEMENT

• Input Materials Meet Specifications
• Explosion Bonding Parameters
 ▪ Standoff Distance
 ▪ Explosive Load
 ▪ Explosive Burn Rate
• Final Inspection

KEY

v_d = Detonation Velocity
v_c = Collision Velocity
v_p = Impact Velocity
β = Dynamic Angle of Collision
Nobelclad Feasability

- Carbon Steel
 - Pressure Vessel grades
 - A516, 533, 537, etc.
 - CR-Mo & CR-Mo-V steel
 - Structural Steels
 - Pipe grades API 5L / DNV

- Cu Alloys
 - Cu A1 & C1
 - Cu Ni alloys
 - CuBe
 - CuCrZr

- Ni Alloys
 - Alloy 625
 - Alloy 825
 - Alloy 600
 - Alloy 31

- Al Alloys
 - 1xxx
 - 3xxx
 - 5xxx
 - 6xxx

- Reactive Metals
 - Ti grades
 - G1, G2, G7, G11, G17
 - Zr grades
 - G700, G702
 - Tantalum
 - Silver

- Stainless Steel
 - 410S
 - 316L
 - 317L
 - 304L
 - 321
 - 347
 - 904L
 - 2205
 - 2507

SARRAT Olivier – BD Chemical and Petrochemical
Condenser Tubesheet on Nuclear PP
Condenser Tubesheet

- Titanium Tubes for optimum corrosion resistance and thermal performance
- Titanium Clad Tubesheets
 - As large as 5000 mm x 7000 mm x 50 mm tk
 - Up to 10 000 holes per TS
 - Titanium Gr 1 for TS / Ti Gr 2 for tubes
 - Clad reduces cost by up to 50%
Condenser Tubesheet reference list

<table>
<thead>
<tr>
<th>CUSTOMER</th>
<th>PROJET</th>
<th>BASE</th>
<th>CLADDING</th>
<th>Width (mm)</th>
<th>Length (mm)</th>
<th>Th.B (mm)</th>
<th>Th.C (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALSTOM SWITZERLAND</td>
<td>LEIBSTADT (Sw)</td>
<td>Ss</td>
<td>B 265 GR 1</td>
<td>2363</td>
<td>3684</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>BALCKE DÜRR Germany</td>
<td>CATTENOM (Fr)</td>
<td>Cs</td>
<td>B 265 GR 1</td>
<td>4630</td>
<td>4800</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>OJSC "Power Machines" (Russia)</td>
<td>DUDAN KULAM (In)</td>
<td>Cs</td>
<td>B 265 GR 1</td>
<td>3650</td>
<td>6300</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>ALSTOM POWER SYSTEM - GE</td>
<td>HINKLEY POINT (GB)</td>
<td>Cs</td>
<td>B 265 GR 1</td>
<td>4490</td>
<td>4620</td>
<td>37</td>
<td>5</td>
</tr>
<tr>
<td>COFELY ENDEL (France)</td>
<td>PALUEL (Fr)</td>
<td>Cs</td>
<td>B 265 GR 1</td>
<td>4950</td>
<td>4164</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>EIFFAGE METAL (France)</td>
<td>CATTENOM (Fr)</td>
<td>Cs</td>
<td>B 265 GR 1</td>
<td>4634</td>
<td>4804</td>
<td>45</td>
<td>5</td>
</tr>
</tbody>
</table>
Equipment

• Automatic UT bench
 • Designing for plate scanning – probe holder self supported with water couplant and filtering system to follow the shape
 • Different transducers support (1 to 8 simultaneous channels)
 • Graphic interface friendly – C scan using color contrast
 • Traceability of the scans– A scan and C scan are automatically recorded for further investigation
 • Dedicated transducers ERD for explosion cladded plates designed through CIVA simulation
Automatic VS Manual Scan

- Overlap under full control
- Probe pressure on the plate constant and identical with the calibration.
- Running speed fully controlled
- Traceability thanks to automatic record of scans
- Faster inspection despite the smaller overlap
Simulation Software

- CIVA simulation software developed specifically for nondestructive testing applications. This high-performance and versatile software is the culmination of more than ten years of development.
 - Design optimal probes for an application
 - Verify inspection parameters
Dual element transducer 4MH

- Improves near surface resolution
- Couples well on rough or curved surfaces
- Reduces noise in coarse grained materials
- Combines penetration capabilities of a lower frequency single element transducer with the near surface resolution capabilities of a higher frequency single element transducer
- Adapt the transducer focal spot to the inspected plate.
Particularity of Ti cladded plates

- $Z_1 = Z_2$
 - Similar impedance
- Z_1 and Z_2 different
 - Dissimilar impedance
EN 10160 Overview

- EN 10 160 with EN 17405
 - Calibration block – flat bottom Diam 5 (S3, E4)
 - Settings on interface echo
 - Threshold on interface echo first and additionally backwall
 - Overlap set on FTH at – 6db

![Diagram showing backwall reflection and FBH echo]
EN 10160 Civa Simulation

- Different shapes (complexes, simples)
- Different sizes
 - Ø 2 mm & 15 mm
 - Rectangular 1 x 2

All flaws are detected
B 898 Overview

- B 898 & SA 578
 - No calibration block (unless requested)
 - Settings on backwall reflection
 - Threshold on backwall echo
 - Overlap (S1) at min 10% of crystal size
B 898 Civa Simulation

- Same configuration
- Smallest flaws not detected
 - Ø 2 mm
 - Rectangular 1 x 2

3 flaws are not detected