Selling Titanium to the Industrial Market
Industrial Market

• WHY?

• Expansion Worldwide
 – Growth 2018 – 6.3%; 2019 – 6.8%
 2020 to 2022 – average 7.0%

• Proven chemical technologies

• Additional corrosive environments

• New processes – recycling
Concerns Raised

- Availability
- High Cost
- Limited Alloys
- Code Qualification
- Design Criteria
- Fab Quality
- Corrosion Data
- Competitive Materials
Availability

- Not “un-obtainium” anymore
- Not an “exotic” Metal
- Worldwide Supply Base
 - Quick, on-time material delivery
- Stocking Distributors in Industry
- Knowledgeable Fabricators
Cost

• **Ti Stable Cost (2009-18)** vs Other CRAs
 - Nickel, SS and CuNi Alloys
 • Ni, Cr, Mo, Cu volatility

• **Ti Initial Cost** – Very Competitive

• **Life Cycle Costing**
 • Effective against non-metallic MOCs & Lower Nickel alloys
Cost

• Initial Cost Competitive with CRAs
 – Use Ti density, design allowables to develop:

 Cost per Square Meter vs Nickel Alloys
 – Ti Grade 2
 – 1/2 of C276 cost
 – 2/3 of 625 cost
Comparative Costs

Schedule 40 Pipe Cost Ratios

<table>
<thead>
<tr>
<th>Material</th>
<th>2" Diameter Cost Ratio</th>
<th>6" Diameter Cost Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>316 Stainless Steel</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Alloy 20</td>
<td>2.20</td>
<td>1.33</td>
</tr>
<tr>
<td>Ni-Cu Alloy 400</td>
<td>1.75</td>
<td>1.72</td>
</tr>
<tr>
<td>Titanium</td>
<td>2.04</td>
<td>2.67</td>
</tr>
<tr>
<td>Ni Alloy C276</td>
<td>3.87</td>
<td>3.99</td>
</tr>
</tbody>
</table>
Life Cycle Costs

• **Titanium Effectiveness**
 – Longer Life with low or no maintenance

• **Analysis must include:**
 – Downtime, production loss, all maintenance costs, removal of defective equipment, etc.
 – Capital vs Maintenance Budget
 – Company ROI must be realistic
Alloys

• **Titanium Alloys**
 - Grades 2 & 2H, 7 & 7H (Pd), 9 (3-2.5), 1 & 11 (for clad), 12 (Ni-Mo), etc.

• **Compete against SS & Nickel Alloys**
 - Duplex SS (2205-2507), 904L, Alloy 20, 6MoAlloys, 625, C2000, C22, C276, etc.
Code Qualifications

• Titanium Alloys
 – Approved by ASME to 600°F
 – ASME Div 1 (17 alloys) and Div 2 (6 alloys) approved
 – Approved by other Codes & Specifications
 • PED, CRN, API, AWS, ASTM
Design Criteria

• Design for Titanium Properties
 – density, strength, corrosion resistance

• Design for Effective Use
 – Only where needed for corrosion
 • Flanges, supports, etc.
 – Titanium Clad to lower cost (>1” thick)
Quality of Fabrication

• Experienced Titanium Fabricators
• Educate Market in Inspection & Quality Control Requirements
• Titanium Field Welding – Available & Reliable
Corrosion Data

• Titanium Historical data available
 – Key applications well documented
 – Ensure Data availability to end users

• Nickel Producers continue to develop and publish New Field and Lab. results
 – NACE Publications mostly pro-Nickel
Competitive Alloys

• Nickel, Copper & Stainless Steel
 – Companies & Alloy Development
 – Salespersons & Technical Staff

• Other Issues Nickel industry uses against Ti:
 • “Hydriding”
 • “Fluorides”
Non-Metallic Materials

- Variety of Materials
 - Dual Laminate, FRP, Linings and Coatings
- Large Sales Force
- Compete on lower cost
- Questionable life plus maintenance
Summary - Market

• Industrial Market
 – Expanding between 6 -7 % annually
 – Combination of Historical and New Uses

Titanium should get a reasonable share of this increasing market
Summary - Issues

• Competitive MOCs are numerous
• Ni Producer support is High
• Competitive Sales Force is Large
• Titanium is still misunderstood
 • By Chemical Industry Engineers and Engineering Companies
Summary

- Titanium Industry
 - Focus is an Issue
 - Need Aggressive Posture in Titanium
 - Cooperation between Producers and Fabricators is essential

ITA can be the Place for this Focus.
Thank You

Charles Young
Business Development Manager
Metallurgist
Tricor Metals
Wooster, Ohio USA
ITA Global Industrial Committee Chairman
330-264-3299 x 2500
cyoung@tricormetals.com