Titanium Usage on Bombardier Aircraft: Present and Challenges for the Future

Bruce Thomas
Senior Engineering specialist,
Bombardier Product Development Engineering, Aerospace

Titanium USA 2016
International Titanium Association
Scottsdale, Arizona

September 28th, 2016
Bombardier – Evolution Of Mobility

The World’s Only Manufacturer of Trains and Planes

INNOVATION IS PART OF OUR DNA
Bombardier Overview

Bombardier Transportation

- Customers in more than 60 countries
- Presence in 40 countries\(^1\)
- Employees: 39,400\(^2\)
- Headquarters in Berlin, Germany

Bombardier Aerospace

- Customers in more than 100 countries
- Presence in 29 countries\(^1\)
- Employees: 31,200\(^2\)
- Headquarters in Montréal, Canada

1. Defined as countries with BT or BA employees
2. As of December 31, 2015
We Offer A Broad Business Aircraft Portfolio...

LEARJET family
- Learjet 70
- Learjet 75

The Learjet family of aircraft features exceptionally fast cruise speeds, high climb rates and operating ceilings, along with competitive operating costs. ¹

CHALLENGER family
- Challenger 350
- Challenger 650

The Challenger family of aircraft features productivity-enhancing business tools, with the most comfortable cabins in their category. ¹

GLOBAL family
- Global 5000
- Global 6000
- Global 7000²
- Global 8000²

The Global family of aircraft offers a balance of performance, comfort and productivity for long-range missions. ¹

¹ Under certain operating conditions, when compared to aircraft currently in service. See aircraft program disclaimer at the end of this presentation.
² Currently under development.
...And A Broad Portfolio Of Commercial Aircraft In The 20- To 149-Seat Categories

Q SERIES
- Market category: 60- to 90-seat turboprop
- Models: Q400, extra capacity, combi

CRJ SERIES
- Market category: 70- to 100-seat regional jets
- Models: CRJ700, CRJ900 and CRJ1000

C SERIES
- Market category: 100- to 150-seat mainline single-aisle jets
- Models: CS100 and CS300
Bombardier is continually evolving its product platforms to maintain its leadership in the industry and to offer products and services that exceed its customers’ expectations.
Performance Driven for new aircraft design:

• Fuel efficiency
 • Lower structural weight of components
 • Higher strength, lower density materials
 • Composites, hybrid structures

• Lower maintenance costs
 • Increased inspection intervals
 • Fatigue resistant, damage tolerance materials
 • Corrosion resistant materials
 • Impact resistant materials

• Cost
 • Acquisition cost
 • Operating cost
 • Disposal cost
 • Material recycling

• New innovative aircraft require optimized material solution
Material Selection for Aircraft – Titanium Alloys

Advantages:
• Low density (~2/3 density of steel) high strength
• Excellent specific strength
• Excellent fracture toughness
• Excellent corrosion resistance
• Excellent fatigue resistance
• Conductive
• Recyclable

Disadvantages
• Cost
 • Raw material cost and processing costs
• Processing
 • Heat treatment, machining, forming
Titanium – Focus

Reduction in BOM
 • Better Buy to Fly Ratio
 • Pre-cut near net shape raw material
 • More processing closer to the mill

Fewer Parts
 • Machining, forgings, castings

Larger Parts
 • Less joints / fasteners

Less operations due to near net shape
 • Greater use of die forgings
 • Introduction of Additive manufacturing
Titanium Usage on Business Aircraft

- **Alloys**
 - Ti-6Al-4V most widely used
 - CP Commercially Pure grades
 - Ti-3Al-2.5V

- **Forms**
 - Bar
 - Sheet & Plate
 - Forging
 - Tubing

Applications:

- High strength components
 - Wing attachments
 - Flap track components

- High temperature components
 - Firewalls
 - Pylon structure
 - Leading edge components

- Hydraulic Lines
To Reduce The Cost

From Plate to Die Forging

From Hand Forging to Die Forging
To Reduce The Cost

From Plate / Bar to Die Forgings

<table>
<thead>
<tr>
<th>Center Wing Box</th>
<th>Mid Fuselage</th>
<th>Wings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To Reduce The Cost

From Forgings to Extrusions
To Reduce The Cost

From Plate to Casting: Adequate static, corrosion durability and damage tolerance properties demonstrated
Introduction of Additive Manufactured (AM) Components on Global 7000

• Evaluation of AM technology
 • Pre-production evaluation through joint industry-governent programs (CRIAQ) to validate proof of concept
 • CRIAQ projects completed in 2014
• Substitution of existing titanium components in order to save weight and cost
 • Several potential components evaluated
• Part Categories / Type
 • Secondary Structure
 • Low criticality Primary Structure (no fatigue)
 • APU goose neck fitting selected for first component
APU Goose Neck Design

APU Door Hinge
- APU Hinge used on Global 5000/6000/7000/8000
- Initial material- Titanium 6Al-4V per AMS 4928
- Currently manufactured from bar stock
 - Very high buy/fly ratio
- Manufactured using laser based system
 - EOS 280/290 powder fed laser fusion
- Final design is currently undergoing qualification & certification testing
- Optimized final design provides both cost & weight savings
Certification of new materials and processes for civil aircraft is controlled by regulatory authorities:

- FAA – (MMPDS) Federal Aviation Authority (Metallic Material Properties Development & Standardization)
- MMPDS Working group, Emerging Technology Working Group (ETWG) tasked with developing handbook guidelines for the introduction of new technologies. BA as well as other OEM’s input to guidelines

Guidelines for Emerging Materials & technologies:

- Detailed report outlining the procedures and guidelines for the development of statistically based allowables from new technologies focused on additive manufacturing.
- Inputs from FAA specialists & Battelle
- Reference ASTM F2792 for general process & definitions
- Focuses on Powder Bed Processes and Direct Deposition (e.g. EB processes)
- Importance of Non-Destructive testing challenges
Certification of Titanium Additive Manufactured (AM) Components

Conclusions

- Significant variability with the numerous Additive Manufacturing (AM) processes which do not warrant the inclusion of design values with the MMPDS handbook on a general basis.
- FAA will currently only consider “Point Design” for the certification of AM produced parts.
- FAA has released an Issue Paper – AMN-113/AMN-115 titled “Additive Manufacturing Material Allowables Test Program”
 - Defines process for certification of AM part
 - Focuses on variability of material properties
 - Allows for the use of special factors (25.619) to account for variability where “due to quantity of tests needed or difficulty in extracting test specimens from representative parts due to part geometry”
 - Allows for the use of “casting factors” per 25.621
- FAA strongly recommends a building block approach to certification of components.
 - Basic simple coupons
 - Structural details
 - Sub-component
 - Full-scale component
- Degree of testing would be dependent upon size and criticality of the part
Conclusion

• Titanium remains a material of choice in aerospace
• Cost reduction efforts from titanium manufacturers will help promote its use
• Near net shape titanium forms will replace standard plate, bars and hand forging
 – Improvements in machining thick plate & die forgings is required
• Additive manufacturing is attractive
 – Best suited to replace complex parts with high buy to fly ratios
 – Deposition maturity needs development to reach an adequate Manufacturing Readiness Levels (MRL) for larger structural components
 – Qualification/Certification of parts is a concern
 > Providing a high level of confidence in the structural integrity of components built with additive technology will require extensive testing, demonstration, and data collection
 > There is a need for a concerted co-operative approach in order to increase the Aerospace Industry use of Additive Manufacturing for structural parts
FORWARD-LOOKING STATEMENTS

This presentation includes forward-looking statements, which may involve, but are not limited to: statements with respect to our objectives, guidance, targets, goals, priorities, our market and strategies, financial position, beliefs, prospects, plans, expectations, anticipations, estimates and intentions; general economic and business outlook, prospects and trends of an industry; expected growth in demand for products and services; product development, including projected design, characteristics, capacity or performance; expected or scheduled entry-into-service of products and services, orders, deliveries, testing, lead times, certifications and project execution in general; our competitive position; and the expected impact of the legislative and regulatory environment and legal proceedings on our business and operations. Forward-looking statements generally can be identified by the use of forward-looking terminology such as “may”, “will”, “expect”, “intend”, “anticipate”, “plan”, “foresee”, “believe”, “continue”, “maintain” or “align”, the negative of these terms, variations of them or similar terminology. By their nature, forward-looking statements require us to make assumptions and are subject to important known and unknown risks and uncertainties, which may cause our actual results in future periods to differ materially from forecasted results. While we consider our assumptions to be reasonable and appropriate based on information currently available, there is a risk that they may not be accurate. For additional information with respect to the assumptions underlying the forward-looking statements made in this presentation, refer to the respective Guidance and forward-looking statements section in the Aerospace section in the Management's Discussion and Analysis ("MD&A") of the Corporation's annual report for the fiscal year ended December 31, 2013.

Certain factors that could cause actual results to differ materially from those anticipated in the forward-looking statements include risks associated with general economic conditions, risks associated with our business environment (such as risks associated with the financial condition of the airline industry and major rail operators), operational risks (such as risks related to developing new products and services; doing business with partners; product performance warranty and casualty claim losses; regulatory and legal proceedings; the environment; dependence on certain customers and suppliers; human resources; fixed-price commitments and production and project execution), financing risks (such as risks related to liquidity and access to capital markets, exposure to credit risk, certain restrictive debt covenants, financing support provided for the benefit of certain customers and reliance on government support) and market risks (such as risks related to foreign currency fluctuations, changing interest rates, decreases in residual values and increases in commodity prices). For more details, see the Risks and uncertainties section in Other in the MD&A of the Corporation's annual report for the fiscal year ended December 31, 2013. Readers are cautioned that the foregoing list of factors that may affect future growth, results and performance is not exhaustive and undue reliance should not be placed on forward-looking statements. The forward-looking statements set forth herein reflect our expectations as at the date of this presentation and are subject to change after such date. Unless otherwise required by applicable securities laws, we expressly disclaim any intention, and assume no obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise. The forward-looking statements contained in this presentation are expressly qualified by this cautionary statement.