PRODUCTION OF INDUSTRIAL INGOTS OF THE INTERMETALLIC VTI-4 ALLOY USING VACUUM ARC AND SKULL MELTS

A.V. Alexandrov, S.V. Chineykin, A.G. Ziganshin, D.A. Khudyakov
JSC «Chepetsky Mechanical Plant»
Glazov, Russian Federation
JSC «Chepetsky Mechanical Plant» is a part of TVEL Corporation. It's the enterprise of full cycle of Zirconium fabrication from raw materials to products for the nuclear industry. Also it's well known for the production of:

- Uranium;
- Calcium;
- Niobium;
- Zirconium dioxide and its articles;
- Superconducting materials.

Within diversification the manufacturing of
- Titanium alloy and
- Hafnium items
were developed and launched into production.
Composition of VTI-4 alloy

<table>
<thead>
<tr>
<th>Elements</th>
<th>Al</th>
<th>Nb</th>
<th>Zr</th>
<th>Mo</th>
<th>V</th>
<th>Si</th>
<th>O</th>
<th>N</th>
<th>C</th>
<th>Sum of other impurities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>10-12</td>
<td>38-42</td>
<td>1-1,5</td>
<td>0,5-1,0</td>
<td>0,5-1,0</td>
<td>0,1-0,25</td>
<td>≤ 0,08</td>
<td>≤ 0,03</td>
<td>≤ 0,03</td>
<td>≤ 0,2</td>
</tr>
</tbody>
</table>
Large-scaled Ingots

<table>
<thead>
<tr>
<th>Diameter, mm</th>
<th>Ingot</th>
<th>Estimated weight, kg</th>
<th>Melting scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td>No. 1</td>
<td>490</td>
<td>3 vacuum arc remelting</td>
</tr>
<tr>
<td></td>
<td>No. 2</td>
<td>630</td>
<td>2 vacuum arc remelting + 1 vacuum arc skull remelting</td>
</tr>
</tbody>
</table>
Composition of the Burden

Materials

Zr

Ti sponge

Al

Si

Master alloys

Nb-Ti

Al-Mo-V-Ti

V-Al
Briquettes

Vertical hydraulic press

Alloying components on the lateral surface
Welding of electrodes

Electron beam unit

Welded seam
Melting furnaces

Vacuum arc furnace

Vacuum arc scull furnace
Ingot of the 1 VAR

Ingot

Lateral surface

Thin cracks at the top end
Schull ingot

Ingot without a crown

Lateral surface

Cracks near the top end
Ingot of the 3 VAR

Ingot after unloading

Lateral surface
Ingot No.2
Ø 360 mm
after turning
Chemical Composition of 3 VAR Ingots, wt.%

<table>
<thead>
<tr>
<th>Ingot (scheme)</th>
<th>Position</th>
<th>Al</th>
<th>Nb</th>
<th>Zr</th>
<th>Mo</th>
<th>V</th>
<th>Si</th>
<th>O</th>
<th>N</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Requirements</td>
<td>10-12</td>
<td>38-42</td>
<td>1-1,5</td>
<td>0,5-1,0</td>
<td>0,5-1</td>
<td>0,1-0,25</td>
<td>≤ 0,08</td>
<td>≤ 0,03</td>
<td>≤ 0,03</td>
</tr>
<tr>
<td>No.1 (3 VAR)</td>
<td>Top end</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,055</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Belt No.1</td>
<td>11,88</td>
<td>40,91</td>
<td>1,52</td>
<td>0,86</td>
<td>0,80</td>
<td>0,14</td>
<td>-</td>
<td>0,0070</td>
<td>0,0120</td>
</tr>
<tr>
<td></td>
<td>Belt No.2</td>
<td>11,77</td>
<td>41,26</td>
<td>1,49</td>
<td>0,87</td>
<td>0,80</td>
<td>0,14</td>
<td>-</td>
<td>0,0056</td>
<td>0,0092</td>
</tr>
<tr>
<td></td>
<td>Belt No.3</td>
<td>11,29</td>
<td>42,21</td>
<td>1,45</td>
<td>0,85</td>
<td>0,77</td>
<td>0,13</td>
<td>-</td>
<td>0,0061</td>
<td>0,0095</td>
</tr>
<tr>
<td></td>
<td>Bottom end</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,053</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>11,65</td>
<td>41,46</td>
<td>1,49</td>
<td>0,86</td>
<td>0,79</td>
<td>0,14</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>No.2 (2 VAR+ 1 VASR)</td>
<td>Top end</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,052</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Belt No.1</td>
<td>12,12</td>
<td>40,86</td>
<td>1,25</td>
<td>0,9</td>
<td>0,84</td>
<td>0,14</td>
<td>-</td>
<td>0,0081</td>
<td>0,018</td>
</tr>
<tr>
<td></td>
<td>Belt No.2</td>
<td>11,94</td>
<td>41,51</td>
<td>1,28</td>
<td>0,89</td>
<td>0,83</td>
<td>0,13</td>
<td>-</td>
<td>0,0100</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>Belt No.3</td>
<td>11,87</td>
<td>41,32</td>
<td>1,27</td>
<td>0,89</td>
<td>0,83</td>
<td>0,13</td>
<td>-</td>
<td>0,0099</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>Bottom end</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,048</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>11,98</td>
<td>41,23</td>
<td>1,27</td>
<td>0,89</td>
<td>0,83</td>
<td>0,13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

A. Alexandrov, Leading Research Engineer

April 18-20, 2016 • Paris Marriott Rive Gauche Hotel & Conf. Center • Paris, France Slide # 13
Statistical Analysis of 3 VAR Ingots

<table>
<thead>
<tr>
<th>Element</th>
<th>Ingot No.1 (scheme 3 VAR)</th>
<th>Ingot No.2 (scheme 2 VAR + 1 VASR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range, wt.%</td>
<td>Standard deviation, wt.%</td>
</tr>
<tr>
<td>Al</td>
<td>0.59</td>
<td>0.31</td>
</tr>
<tr>
<td>Nb</td>
<td>1.30</td>
<td>0.67</td>
</tr>
<tr>
<td>Zr</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>V</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Mo</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Si</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Statistical Analysis of 3 VAR Ingots

- Standard deviation
- Coefficient of variation

Alloying elements:
- Al
- Nb
- Zr
- V
- Mo
- Si

Graphs showing:
- Ingots No.1 (3 ВДП)
- Ingots No.2 (2 ВДП+1 ВДГП)
1 Two large-sized industrial triple remelted ingots of VTI-4 alloy were manufactured in JSC «Chepetsky Mechanical Plant»: the first - with the estimated weight of 490 kg with use of only vacuum arc remelting, the second - with the estimated weight of 630 kg with carrying out one remelting in the vacuum arc skull furnace.

2 The chemical composition of ingots corresponded to the established requirements.

3 The ingots have a uniform distribution of the alloying elements along their height. An ingot obtained with the use of skull melting has a more homogeneous distribution in comparison with an ingot of only VAR.

4 It is necessary to collect data on a series of melted ingots.

4 It is planned to implement a complex of works on examination of metal quality in an ingot volume and the analysis of its behavior in the deformation processing.
Contact

Alexander Alexandrov,
Leading Research Engineer
JSC «Chepetsky Mechanical Plant»

Email Address:
alexandrov.alexander.vl@gmail.com
Thank you for your attention!