HIGH-PERFORMANCE METALS AND MATERIALS by GfE

Manufacturing of TiAl Powders Based on Electrode Induction Gas Atomization

Volker Güther¹, Karin Ratschbacher¹, Janny Lindemann²

¹GfE Metalle und Materialien GmbH, Nuremberg, Germany
²GfE Fremat GmbH, Brand-Erbisdorf, Germany
1. Introduction

2. Production of TiAl feed-stock materials
 2.1 Virgin route
 2.2 Recycling route

3. Production of TiAl powders

4. Characterization of TiAl powders

5. Summary
CAUTIONARY NOTE

THIS DOCUMENT IS STRICTLY CONFIDENTIAL AND IS BEING PROVIDED TO YOU SOLELY FOR YOUR INFORMATION BY AMG ADVANCED METALLURGICAL GROUP N.V. (THE “COMPANY”) AND MAY NOT BE REPRODUCED IN ANY FORM OR FURTHER DISTRIBUTED TO ANY OTHER PERSON OR PUBLISHED, IN WHOLE OR IN PART, FOR ANY PURPOSE. FAILURE TO COMPLY WITH THIS RESTRICTION MAY CONSTITUTE A VIOLATION OF APPLICABLE SECURITIES LAWS.

This presentation does not constitute or form part of, and should not be construed as, an offer to sell or issue or the solicitation of an offer to buy or acquire securities of the Company or any of its subsidiaries nor should it or any part of it, nor the fact of its distribution, form the basis of, or be relied on in connection with, any contract or commitment whatsoever.

This presentation has been prepared by, and is the sole responsibility of, the Company. This document, any presentation made in conjunction herewith and any accompanying materials are for information only and are not a prospectus, offering circular or admission document. This presentation does not form a part of, and should not be construed as, an offer, invitation or solicitation to subscribe for or purchase, or dispose of any of the securities of the companies mentioned in this presentation. These materials do not constitute an offer of securities for sale in the United States or an invitation or an offer to the public or form of application to subscribe for securities. Neither this presentation nor anything contained herein shall form the basis of, or be relied on in connection with, any offer or commitment whatsoever. The information contained in this presentation has not been independently verified. No representation or warranty, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy or completeness of the information or the opinions contained herein. The Company and its advisors are under no obligation to update or keep current the information contained in this presentation. To the extent allowed by law, none of the Company or its affiliates, advisors or representatives accept any liability whatsoever (in negligence or otherwise) for any loss howsoever arising from any use of this presentation or its contents or otherwise arising in connection with the presentation.

Certain statements in this presentation constitute forward-looking statements, including statements regarding the Company’s financial position, business strategy, plans and objectives of management for future operations. These statements, which contain the words “believe,” “expect,” “anticipate,” “intends,” “estimate,” “forecast,” “project,” “will,” “may,” “should” and similar expressions, reflect the beliefs and expectations of the management board of directors of the Company and are subject to risks and uncertainties that may cause actual results to differ materially. These risks and uncertainties include, among other factors, the achievement of the anticipated levels of profitability, growth, cost and synergy of the Company’s recent acquisitions, the timely development and acceptance of new products, the impact of competitive pricing, the ability to obtain necessary regulatory approvals, and the impact of general business and global economic conditions. These and other factors could adversely affect the outcome and financial effects of the plans and events described herein.

Neither the Company, nor any of its respective agents, employees or advisors intend or have any duty or obligation to supplement, amend, update or revise any of the forward-looking statements contained in this presentation.

The information and opinions contained in this document are provided as at the date of this presentation and are subject to change without notice.

This document has not been approved by any competent regulatory or supervisory authority.
1. Introduction

GENx aircraft engine family (GE)
- 2011 into commercial service
- γ-TiAl in last stage(s) of LPT
- Ti 48Al -2Cr -2Nb (at.-%)

PurePower PW100G family (PW)
- 2016 into commercial service
- γ/β-TiAl in last stage of LPT
- Ti 43,5Al -4Nb -1Mo -0,1B (at.-%)

LEAP engine family (CFM)
- 2016 into commercial service
- γ-TiAl in last stage of LPT
- Ti -48Al -2Cr -2Nb (at.-%)
1. Introduction

The **GE9x** aircraft engine is being equipped with **TiAl LPT blades**
produced by **Additive Manufacturing via EBM**
2. GfE TiAl materials production - virgin route -

a) VAR processing of compacted consumable electrodes to ingots

- VAR furnace
- compacted consumable electrodes
- single VAR processed ingots
2. GfE TiAl materials production - virgin route -

b) Ingot homogenization in VAR Skull Melter and subsequent centrifugal casting

Partly remelted VAR ingot as consumable electrode in the VAR Skull Melter

Crucible with skull after pouring

Demoulded casting wheel consisting of 18 moulds, diameter approximately 1.3 m
2. GfE TiAl materials production - recycling route -

funnel / tundish, water jet cut feeders, crushed casting plate, crushed casting crown, secondary revert from pre-shaping via water jet cutting.
3. GfE TiAl materials production - recycling route -

ISM
Induction Skull Melting
After the centrifugal pouring procedure:
Casting wheels of VAR SM are applicable to ISM as well

Remaining skull in the crucible after pouring (diameter 320 mm)
3. Production of TiAl powders

VIGA
Vacuum Induction Gas Atomization

PIGA
Plasma Inert Gas Atomization

EIGA
Electrode Induction Inert Gas Atomization

PREP
Plasma Rotating Electrode Process
3. Production of TiAl powders

cast EIGA electrodes

EIGA processing to powder
3. Production of TiAl powders
3. Production of TiAl powders
3. Production of TiAl powders - screening under controlled Ar atmosphere -
4. Characterization of TiAl powders - EBM powder 45 – 150 µm

Apparent density: 2.2 g/cm³
Flow test: 31 s
4. Characterization of TiAl powders
- EBM powder 45-150 µm -

Result Statistics

<table>
<thead>
<tr>
<th>Distribution Type: Volume</th>
<th>Concentration = 0.1596 %Vol</th>
<th>Density = 1.000 g / cub. cm</th>
<th>Specific S.A. = 0.0852 sq. m / g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Diameters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D (v, 0.1) = 49.19 um</td>
<td></td>
<td>D (v, 0.5) = 75.56 um</td>
<td>D (v, 0.9) = 124.29 um</td>
</tr>
<tr>
<td>D [3, 2] = 70.46 um</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph:

- X-axis: Particle Diameter (µm.)
- Y-axis: %

- Graph shows the particle size distribution of the TiAl powders.

AMG TITANIUM ALLOYS & COATINGS

GfE
4. Characterization of TiAl powders - EBM powder 45-150 µm -

- no deviations in alloying element composition
- minor increase of processing related impurities: Σ 160 ppm (Cu, Si, Ni)
- determined oxygen pick-up of 20 ppm within accuracy limit of analysis

<table>
<thead>
<tr>
<th>Element</th>
<th>Feed Stock</th>
<th>Powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>57.9</td>
<td>57.8</td>
</tr>
<tr>
<td>Al</td>
<td>34.5</td>
<td>34.5</td>
</tr>
<tr>
<td>Nb</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Cr</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Fe</td>
<td>0.028</td>
<td>0.030</td>
</tr>
<tr>
<td>Co</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Cu</td>
<td>0.002</td>
<td>0.008</td>
</tr>
<tr>
<td>Hf</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Mn</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Mo</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Ni</td>
<td>0.007</td>
<td>0.011</td>
</tr>
<tr>
<td>Si</td>
<td>0.003</td>
<td>0.009</td>
</tr>
<tr>
<td>Sn</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Ta</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>V</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>W</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Y</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Zr</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>C</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>H</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>N</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>O</td>
<td>0.039</td>
<td>0.041</td>
</tr>
<tr>
<td>S</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>ToE</td>
<td>0.028</td>
<td>0.044</td>
</tr>
</tbody>
</table>

XRF (Borax method) all figures in wt.-%
ICP
LECO combustion

TiAl TNM powder 25 – 80 µm

Apparent density: 2.2 g/cm³
Flow test: 24.1 s
5. Summary

- The strategy of GfE in the emerging market of TiAl based components for aircraft engines and race sport engines is to stay in the technology leadership for TiAl semi-finished products and powders.

- TiAl semi-finished products of outstanding homogeneity are being produced via Vacuum Arc Remelting (VAR) of ingots and subsequent homogenization in VAR Skull Melter (VAR SM) followed by centrifugal casting in permanent moulds.

- Valuable revert is being recycled in a single step conversion process to semi-finished products based on Induction Skull Melting (ISM) and subsequent centrifugal casting.

- TiAl powder production is based on Electrode Induction Melting technology (EIGA).

- Production capacities will be adjusted to market needs.
GfE Employees
The Foundation of our Success

Thank you for your attention

AMG TITANIUM ALLOYS & COATINGS
GfE Metalle und Materialien GmbH
Höfener Str. 45, 90431 Nürnberg, Germany
www.gfe.com