Driving Growth through Innovation

Commercial & Military Titanium Demand Trends

Jeremy Halford, President, Arconic Engineered Structures

Titanium Asia; February 5, 2018
Important Information

Forward–Looking Statements

This presentation contains statements that relate to future events and expectations and as such constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements include those containing such words as “anticipates,” “believes,” “could,” “estimates,” “expects,” “forecasts,” “guidance,” “goal,” “intends,” “may,” “outlook,” “plans,” “projects,” “seeks,” “sees,” “should,” “targets,” “will,” “would,” or other words of similar meaning. All statements that reflect Arconic’s expectations, assumptions or projections about the future, other than statements of historical fact, are forward-looking statements, including, without limitation, statements and projections regarding new aircraft demand, the defense market, spending and titanium demand. Forward-looking statements are not guarantees of future performance and are subject to risks, uncertainties, and changes in circumstances that are difficult to predict. It is possible that actual results may differ materially from those indicated by these forward-looking statements due to a variety of risks and uncertainties, including, but not limited to, deterioration in global economic and financial market conditions generally, and unfavorable changes in the aerospace, defense and titanium markets. Market projections are subject to the risks discussed above and other risks in the market. Arconic disclaims any obligation to update publicly any forward-looking statements, whether in response to new information, future events or otherwise, except as required by applicable law.
The aerospace industry has transitioned...

<table>
<thead>
<tr>
<th>From the Era of Design</th>
<th>To the Era of Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>The past decade focused on development and introduction of new designs and technology</td>
<td>A limited number of new starts</td>
</tr>
<tr>
<td>Resulting in unprecedented number of recently or soon-to-be introduced models by decade’s end</td>
<td>Today’s focus: Transitioning to new airframe and engine platforms</td>
</tr>
<tr>
<td>✓ A320neo ✓ A330neo ✓ A350 XWB ✓ 777X, 737 MAX ✓ 787 Dreamliner ✓ C Series</td>
<td>✓ C919 ✓ MS-21 ✓ E175/195 ✓ MRJ</td>
</tr>
</tbody>
</table>

Materials and process innovations are key, such as Arconic’s 3D printing capabilities, shown here:

![Arconic 3D printing capabilities](image)
Air traffic demand to double over the next 15 years

- Travel demand projected to far outpace GDP growth
- 100 million first-time flyers added every year from within the Asia-Pacific region alone

1) In trillions of Revenue Passenger Kilometers; Source: Airbus 2016 Global Market Forecast
Industry outlook is bolstered by airlines’ performance

Source: IATA, December 2017
Industry forecasts need for 41,000+ new aircraft over next 20 years

- Single Aisles: 29,530
- Widebodies: 9,130
- Regional Jets: 2,370

Results in a 2035 fleet of 46,950 aircraft – approximately 2X what it is today

Dollar value pegged at $6.1 trillion

Source: Boeing 2017 Commercial Market Outlook
Nearer-term outlook buttressed by decade+ of strong orders

The enormous wave of net orders post financial crisis were the product of three drivers:

- High jet fuel prices
- Low interest rates
- New, more fuel-efficient aircraft designs

Has resulted in a combined backlog of more than 13,000 aircraft – roughly 9X worth of deliveries at current rates

Source: Airline Monitor, June 2017; Airbus and Boeing websites
Aerospace materials growth – titanium fastest growing metal

- Overall, raw material demand growth measured in volume (lbs) will be lower than aircraft unit growth due to:
 - Lower buy-to-fly ratios
 - Greater use of composites

- Titanium is growing in conjunction with composites due to the materials’ compatible properties

- Titanium* will grow the fastest among metals with CAGR of 4.0%

*equivalent to a titanium market worth ~$4B per year today.

Source: AeroDynamic Advisory, April 2017
Global defense spending is rebounding

As geo-political tensions and active conflicts increase

- Continuing **global conflicts**
- **Aging aircraft** and systems
- Strengthening GDP and industrial base

Global Defense and Security Expenditures ($B USD\(^{(1)}\))

<table>
<thead>
<tr>
<th>Year</th>
<th>Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>1,740</td>
</tr>
<tr>
<td>2013</td>
<td>1,719</td>
</tr>
<tr>
<td>2014</td>
<td>1,707</td>
</tr>
<tr>
<td>2015</td>
<td>1,736</td>
</tr>
<tr>
<td>2016</td>
<td>1,768</td>
</tr>
<tr>
<td>2017 (est)</td>
<td>1,822</td>
</tr>
</tbody>
</table>

Global 2017 Expenditures ($B USD\(^{(1)}\))

- Americas: 710
- Asia & Oceania: 390
- Africa: 180
- Middle East: 52
- Europe: 490

(1) Expressed in constant 2012 USD and exchange rates
Source: Stockholm International Peace Research Institute (SIPRI)
Acceleration of new platforms and extension of legacy platforms

Airframes
- Continued use of **legacy aircraft**
- Additional production of current generation systems
- Acceleration of **new programs**

Advanced Engines
- Growing demand for engines with improved **performance and efficiency** for legacy and new platforms

Source: IHSGlobal (Janes), Teal Group, Forecast International
Strong titanium growth in defense aerostructures

Estimated Titanium Content, by Weight, in Aerostructures (1)

<table>
<thead>
<tr>
<th>Prior Generation</th>
<th>Current Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-16</td>
<td></td>
</tr>
<tr>
<td>Typhoon</td>
<td></td>
</tr>
<tr>
<td>CH-47</td>
<td></td>
</tr>
<tr>
<td>F-15</td>
<td></td>
</tr>
<tr>
<td>F-18</td>
<td></td>
</tr>
<tr>
<td>F-35</td>
<td>20%</td>
</tr>
<tr>
<td>V-22</td>
<td>31%</td>
</tr>
<tr>
<td>F-22</td>
<td>39%</td>
</tr>
</tbody>
</table>

Drivers of demand in defense

- Ramp-up of 5th gen fighter (F-35)
 - <14%

- Hypersonic weapons and structures; advanced propulsion engines

(1) Excludes propulsion engines, auxiliary engines and props
Market pressure for cost reduction continues

- **Cost-Down Initiatives** such as Boeing’s Partnering for Success, Airbus’s SCOPE+ and Lockheed Martin’s JSF affordability project continue and also have been adopted by other aerospace and defense OEMs.

- **Sourcing Geography** continues to tilt toward local contributions; increasing amounts of sourcing from low-cost / emerging countries.

- **Procurement Practices:** Supplier consolidation and material / contractual aggregation
Product and process innovation are helping drive titanium growth

Optimized Structures
- JSF titanium bulkhead
- Single-piece forging
- Forms “backbone” of aircraft
- Simplified assembly
- Weight and cost savings

High Temperature Alloys
- Weight saving vs. Nickel 625
- Options for sheet, plate, billet
- Superior post thermal exposure properties
- Suitable for forming, heat treating, forging, welding

Additive Manufacturing

Direct 3D Printing
- Reduced material input
- Enables part consolidation
- Speeds time to market
- Arconic/Airbus announce 3D printing 1st – installation of titanium bracket on series production commercial aircraft

Hybrid Ampliforge™ Technology
- Reduced material input
- Nearer-net forgings
- Fewer forging operations
- CRA with Airbus for large-scale titanium parts made with HDR technologies and Ampliforge™